O Sistersinspirit.ca facilita a busca por soluções para todas as suas perguntas com a ajuda de uma comunidade ativa. Descubra soluções abrangentes para suas perguntas de profissionais experientes em diversas áreas em nossa plataforma. Descubra soluções detalhadas para suas dúvidas de uma ampla gama de especialistas em nossa plataforma amigável de perguntas e respostas.

Seja z = 8 ( cos π + i sen π ) 

V F Uma das raízes cúbicas de z é W = 3 + i
V F Os afixos das raízes cúbicas de z são vértices de um triângulo eqüilátero.
V F Os argumentos das raízes cúbicas de z são termos de uma progressão aritmética. 
V F | z | = 2 [tex] \sqrt{2} [/tex]
V F z^-1 = 8^-1 ( cos π + i sen π )


Sagot :

[tex]z = 8 ( cos \pi + i sen \pi ) \\ \\ z=8(-1+i.0) \\ \\ \boxed{z=-8} [/tex]

Vemos que z é o número real -8

Logo a alternativa correta é:  | z | = 2 
V F Uma das raízes cúbicas de z é W = 3 + i

[tex]raizes: w0 = 1+ i\sqrt{3} w1 = -2 w2 = 1-i \sqrt{3} [/tex]

F

V F Os afixos das raízes cúbicas de z são vértices de um triângulo eqüilátero.

verdadeiro, um triangulo equilátero inscrito na circuferência de centro na origem e raio igual a 2.
   
    raiz de 3|
                   |
_-2______|______1_______
                   |
   raiz de 3 |

V F Os argumentos das raízes cúbicas de z são termos de uma progressão aritmética. 

verdadeiro:

raiz cúbica:

cos 3*° = cos  π = -1
sen 3*° = sen  π = 0

substituindo na segunda formula de moivre vai ficar:

° =  π/3 + k * 2π/3 para k=0,1,2.

fazendo as operações, os argumentos vão ficar:

π/3 , π e 5π/3

é uma progressão com razão: 2π/3

V F | z | = 2 

8 = raiz cúbica de 8 = 2

falso 

V F z^-1 = 8^-1 ( cos π + i sen π )

falso, ficaria:

8^-1 (-1*cosπ + i -1*senπ)
8^-1 (-cosπ + i -senπ)
 .....