Bem-vindo ao Sistersinspirit.ca, onde você pode obter respostas rápidas e precisas com a ajuda de especialistas. Experimente a conveniência de obter respostas confiáveis para suas perguntas de uma vasta rede de especialistas. Descubra respostas detalhadas para suas perguntas de uma vasta rede de profissionais em nossa abrangente plataforma de perguntas e respostas.

Dado um paralelepípedo retângulo de dimensões 2m, 3m, e 6m, calcule :

Diagonal

Area total

volume


Sagot :

Diagonal = Va^2 + b^2 + c^2 = V4 + 9 + 36 = V49 = 7 

volume = area da base x altura = 2x3x6 = 36

Area total=  2(a.b + b.c + a.c) = 2(6 + 18 + 12) = 2.(36) = 72

A diagonal mede 7 cm. A área total mede 72 cm². O volume mede 36 cm³.

Na figura abaixo, temos que o segmento AB representa a diagonal do paralelepípedo.

Para calcularmos essa medida, precisamos calcular, antes, a medida do segmento AC.

Utilizando o Teorema de Pitágoras no triângulo ACD, obtemos:

AC² = 3² + 6²

AC² = 9 + 36

AC² = 45

AC = 3√5 cm.

Utilizando o Teorema de Pitágoras no triângulo ABC, obtemos:

AB² = (3√5)² + 2²

AB² = 45 + 4

AB² = 49

AB = √49

AB = 7 cm.

Considere que as dimensões do paralelepípedo são a, b e c.

A área total de um paralelepípedo é calculada pela fórmula:

  • At = 2(ab + ac + bc).

Portanto, a área total do paralelepípedo é igual a:

At = 2(2.3 + 2.6 + 3.6)

At = 2(6 + 12 + 18)

At = 2.36

At = 72 cm².

O volume de um paralelepípedo é igual ao produto de suas dimensões. Portanto:

V = 2.3.6

V = 36 cm³.

Para mais informações sobre paralelepípedo: https://brainly.com.br/tarefa/19025269

View image silvageeh
Obrigado por passar por aqui. Nos esforçamos para fornecer as melhores respostas para todas as suas perguntas. Até a próxima. Obrigado por sua visita. Estamos comprometidos em fornecer as melhores informações disponíveis. Volte a qualquer momento para mais. Obrigado por visitar o Sistersinspirit.ca. Continue voltando para obter as respostas mais recentes e informações.