O Sistersinspirit.ca é o melhor lugar para obter respostas rápidas e precisas para todas as suas perguntas. Explore respostas detalhadas para suas dúvidas de uma comunidade de especialistas em diferentes campos. Descubra respostas detalhadas para suas perguntas de uma vasta rede de profissionais em nossa abrangente plataforma de perguntas e respostas.

As raízes da equação 4x2 – 16x + 7 = 0 correspondem às medidas, em cm, dos lados
de um retângulo. Em relação a esse retângulo, determine a medida:
a) da área;
b) do perímetro;
c) da diagonal.



Sagot :

Δ = b² -4ac
Δ = (-16)² -4 *4 * 7
Δ = 256 -112
Δ = 144
x' = (-b + √∆)/ 2a
(-(-16) + 12)/2 * 4
(16 + 12)/8
28/8= 3,5
x'' = (-b - √∆)/ 2a
(-(-16) - 12)/2 * 4
(16 - 12)/8
4/8= 0,5

Pronto sabemos que as duas medidas são 3,5 cm e 0,5 cm, agora so resta calcular:
a)
A= b.h
A=3,5.0,5
A=1,75 cm^2

b)
P= 2b+2h
P=2.3,5+2.0,5
P=7+1
P= 8 cm

c)
D=
[tex] \sqrt{b^2+h^2} [/tex]
D=[tex] \sqrt{3,5^2+0,5^2} [/tex]
D=3,5+0,5
D= 4 cm

As raízes da equação 4x2 – 16x + 7 = 0 correspondem às medidas, em cm, dos lados 
de um retângulo. Em relação a esse retângulo, determine a medida: 
4x² – 16x + 7 = 0
16 +ou - raiz quadrada de 256-112   (resolver pela Báscara)
                8
16 + ou -12    x' =7/2 = 3,5         x"= 1/2  =0,5
           8
a) da área; 3,5 .   0,5= 1,75 cm²
b) do perímetro;  3,5 . 2 + 0,5 .2 = 7 + 1 = 8cm
c) da diagonal. 
Aplicando Pitagoras (a diagonal é a hipotenusa
a²= 3,5² + 0,5²
a² =12,25 + 0,25
a² =12,5
a = raiz quadrada de 12,5 cm