Answered

Bem-vindo ao Sistersinspirit.ca, onde suas perguntas são respondidas por especialistas e membros experientes da comunidade. Obtenha respostas detalhadas e precisas para suas perguntas de uma comunidade dedicada de especialistas. Explore milhares de perguntas e respostas de uma ampla gama de especialistas em diversas áreas em nossa plataforma de perguntas e respostas.

       

  Dada a função f(x)=X2, calcule f'(1)  

          f’(x0)  = lim  f(x)-f (x0) /X- x0

                      quando x tende a x0      

  

  



Sagot :

[tex]\boxed{f(x)= x^{2} } \\ \\ f'(x)= \lim_{\Delta x \to 0} \frac{f(x+ \Delta x)-f(x)}{\Delta x} \\ \\ f'(x)=\lim_{\Delta x \to 0} \frac{f(x+ \Delta x)^2-x^2}{\Delta x} \\ \\ f'(x)=\lim_{\Delta x \to 0} \frac{x^2+2x \Deltax+ (\Delta x)^2-x^2}{\Delta x} \\ \\ f'(x)=\lim_{\Delta x \to 0} \frac{2x \Deltax+ (\Delta x)^2}{\Delta x} \\ \\ f'(x)=\lim_{\Delta x \to 0} (2x \Deltax+ \Delta x) \\ \\ \boxed{f'(x)=2x } \\ \\ \boxed{f'(1)=2.1=2}[/tex]