O Sistersinspirit.ca é o melhor lugar para obter respostas confiáveis e rápidas para todas as suas perguntas. Conecte-se com uma comunidade de especialistas prontos para ajudar você a encontrar soluções para suas perguntas de maneira rápida e precisa. Descubra soluções confiáveis para suas perguntas de uma vasta rede de especialistas em nossa abrangente plataforma de perguntas e respostas.
Sagot :
Tem duas formas de resolver essa questão. Vou dizer quais são elas, mas só vou resolver por uma delas:
1- Calcular as distâncias entre A e B, B e C, C e D e D e A. Como um losango tem todos os quatro lados congruentes as distâncias entre esses pontos tem que ser a mesma;
2- Um losango tem os quatro lados congruentes. Traçando a diagonal AC temos dois triângulos congruentes, ABC e ADC. Note que [tex]B\^{A}C \equiv D\^{A}C \equiv B\^{C}A \equiv D\^{C}A[/tex]. De modo análogo temos que, ao traçar a diagonal BD, encontramos que [tex]A\^{B}D \equiv C\^{B}D \equiv A\^{D}B \equiv C\^{D}B[/tex].
Traçando, então, as duas diagonais temos que são formados quatro triângulos congruentes. Além disso elas se cortam num ponto P.
Como os quatro triângulos são congruentes temos que os quatro ângulos ao redor de P são retos. Ou seja, para que um quadrilátero seja um losango as diagonais têm que ser perpendiculares e se cruzarem no ponto médio.
Dito isso vamos à resolução. É fácil ver que as retas que passam por AC e BD são y=x e y= -x+11, respectivamente. Também é fácil ver que o produto dos coeficientes angulares delas vale -1, logo as retas são perpendiculares. O ponto P de interseção delas é:
[tex] \left \{ {{y=x} \atop {y=-x+11}} \right. \Rightarrow x=y=\frac{11}{2} \Rightarrow P(\frac{11}{2}, \frac{11}{2})[/tex].
Note que P é ponto médio tanto de AC e BD, portanto ABCD é um losango.
1- Calcular as distâncias entre A e B, B e C, C e D e D e A. Como um losango tem todos os quatro lados congruentes as distâncias entre esses pontos tem que ser a mesma;
2- Um losango tem os quatro lados congruentes. Traçando a diagonal AC temos dois triângulos congruentes, ABC e ADC. Note que [tex]B\^{A}C \equiv D\^{A}C \equiv B\^{C}A \equiv D\^{C}A[/tex]. De modo análogo temos que, ao traçar a diagonal BD, encontramos que [tex]A\^{B}D \equiv C\^{B}D \equiv A\^{D}B \equiv C\^{D}B[/tex].
Traçando, então, as duas diagonais temos que são formados quatro triângulos congruentes. Além disso elas se cortam num ponto P.
Como os quatro triângulos são congruentes temos que os quatro ângulos ao redor de P são retos. Ou seja, para que um quadrilátero seja um losango as diagonais têm que ser perpendiculares e se cruzarem no ponto médio.
Dito isso vamos à resolução. É fácil ver que as retas que passam por AC e BD são y=x e y= -x+11, respectivamente. Também é fácil ver que o produto dos coeficientes angulares delas vale -1, logo as retas são perpendiculares. O ponto P de interseção delas é:
[tex] \left \{ {{y=x} \atop {y=-x+11}} \right. \Rightarrow x=y=\frac{11}{2} \Rightarrow P(\frac{11}{2}, \frac{11}{2})[/tex].
Note que P é ponto médio tanto de AC e BD, portanto ABCD é um losango.
Esperamos que nossas respostas tenham sido úteis. Volte a qualquer momento para obter mais informações e respostas a outras perguntas que tenha. Obrigado por sua visita. Estamos dedicados a ajudá-lo a encontrar as informações que precisa, sempre que precisar. Estamos felizes em responder suas perguntas no Sistersinspirit.ca. Não se esqueça de voltar para mais conhecimento.