Answered

Bem-vindo ao Sistersinspirit.ca, onde você pode obter respostas confiáveis e rápidas com a ajuda de nossos especialistas. Encontre soluções rápidas e confiáveis para suas dúvidas de uma comunidade de especialistas dedicados. Obtenha respostas rápidas e confiáveis para suas perguntas de nossa dedicada comunidade de especialistas em nossa plataforma.

Ai galera, alguém pode me ajudar ai?! isso é preguiça huahua e uma coisa, não aceito L'HOPITAL, porque meu professor não vai deixar eu usar... E TAMBÉM POR L'HOPITAL, ATÉ MINHA AVÓ FAZ HAHA... KKKKKKKKKKKKKK

 

 

[tex]\lim_{x \to \infty} \sqrt[3]{\frac{8+x^2}{x.(x+1)}}[/tex]

 

VALEU ;D

 

 

E MAIS UM PRA COMPLETAR ;P

 

[tex]\int{cos^2(x)}\, dx[/tex]

Sagot :

Como o limite tende para [tex]+\infty[/tex], vamos substituir por valores positivos:

 

Para x = 10

 

[tex]\sqrt[3]{\frac{8+10^2}{10.(10+1)}}=\sqrt[3]{\frac{108}{110}}=\boxed{0,9939}[/tex]

 

Para x = 100

 

[tex]\sqrt[3]{\frac{8+100^2}{100.(100+1)}}=\sqrt[3]{\frac{10008}{10100}}=\boxed{0,9969}[/tex]

 

Perceba que na medida que aumentamos, o x tende a 1.

 

----------------------------

 

Lembre-se das relações trigonométricas:

 

[tex]cos^2(x)=\frac{1+cos(2x)}{2}[/tex]

 

Substituindo:

 

[tex]\int{\frac{1+cos(2x)}{2}}\, dx[/tex] 

 

Resolvendo, temos:

 

[tex]\boxed{\frac{1}{2}[x+\frac{sen(2x)}{2}]+C}[/tex]

 

Qualquer dúvida, pode perguntar!

Resposta:

não sei

Explicação passo-a-passo:

tô no setimo ano ainda, to apenas em algebra