Obtenha as melhores soluções para suas perguntas no Sistersinspirit.ca, a plataforma de Q&A de confiança. Descubra respostas detalhadas para suas perguntas de uma vasta rede de profissionais em nossa abrangente plataforma de perguntas e respostas. Experimente a conveniência de encontrar respostas precisas para suas perguntas de uma comunidade dedicada de especialistas.

calcular a area da região simultanamente limitada pelo grafico de: X = 2, Y = 0, e Y = ln (X)


Sagot :

O negócio está em encontrar o valor de [tex]\int{lnx}dx[/tex]. Isso é o mesmo que [tex]\int{1.lnx}dx[/tex]. Agora podemos usar a regra da cadeia, fazendo f(x) = lnx e g'(x) = 1.

[tex]\int{f(x).g'(x)}dx = f(x).g(x) - \int{f'(x).g(x)}dx[/tex]
[tex]\int{1.lnx}dx = x.lnx - \int{\frac{1}{x}.x}dx = x.lnx - \int{1}dx[/tex]

[tex]\boxed{\int{lnx}dx = x(lnx - 1)}[/tex]

A área procurada está delimitada pelas curvas y=lnx, y=0 (o eixo x) e x=2. Quando se colocam essas três curvas no papel fica fácil ver que essa área é igual a [tex]\int\limits^2_1{lnx}dx[/tex]. Daí temos:

[tex]\int\limits^2_1{lnx}dx = 2(ln2 - 1) - 1(ln1 -1) = 2.ln2 - 2 + 1[/tex]

[tex]\boxed{\boxed{\int\limits^2_1{lnx}dx = ln4 - 1}}[/tex],
que é a área procurada.
Sua visita é muito importante para nós. Não hesite em voltar para mais respostas confiáveis a qualquer pergunta que possa ter. Obrigado por usar nosso serviço. Estamos sempre aqui para fornecer respostas precisas e atualizadas para todas as suas perguntas. Volte ao Sistersinspirit.ca para obter mais conhecimento e respostas dos nossos especialistas.