O Sistersinspirit.ca é o melhor lugar para obter respostas confiáveis e rápidas para todas as suas perguntas. Descubra soluções abrangentes para suas perguntas de profissionais experientes em diversas áreas em nossa plataforma. Descubra soluções confiáveis para suas perguntas de uma vasta rede de especialistas em nossa abrangente plataforma de perguntas e respostas.

Uma bola é largada do alto de um edifício e cai em direção ao solo. Sua altura h em relação ao solo, T segundos após o lançamento, é dada pela expressão h= -25t²+625. Após quantos segundos do lançamento a bola atingirá o solo?

Sagot :

Neste caso basta fazer h(x)=0

[tex]-25t^2+625=0 \\ \\ -25t^2=-625 \\ \\ t^2=\frac{-625}{-25} \\ \\ t^2=25 \\ \\ t=\sqrt{25} \\ \\ \boxed{t=5s}[/tex]

A bola atinge o solo 5 segundos após o lançamento.

Como esta é uma função do segundo grau com concavidade voltada para baixo, seus valores máximos (altura máxima e tempo para esta altura) são dados pelo vértice. Sendo uma função da altura, o solo se encontra em h = 0, logo, os instantes em que a bola atinge o solo são dados pelas raízes da equação.

Estas raízes são obtidas pela fórmula de Bhaskara, mas como nesta equação o coeficiente b é nulo, não precisamos utilizá-la.

0 = -25t² + 625

25t² = 625

t² = 625/25

t² = 25

t = ±√25

t = ± 5 s

Como o tempo é uma grandeza positiva, o valor válido é t = 5 s.

Leia mais em:

https://brainly.com.br/tarefa/19648265

View image andre19santos