Bem-vindo ao Sistersinspirit.ca, a melhor plataforma de perguntas e respostas para obter soluções rápidas e precisas para todas as suas dúvidas. Explore milhares de perguntas e respostas de uma ampla gama de especialistas em diversas áreas em nossa plataforma de perguntas e respostas. Explore um vasto conhecimento de profissionais em diferentes disciplinas em nossa abrangente plataforma de perguntas e respostas.

1-  Sendo cos(x) =1/4, quanto vale sen(x) para  x no intervalo 0 < x <pi/2?
2- Se sen(x) = -12/13 com o x n terceiro quadrannte, determine cos(x):



Sagot :

1)

[tex]sen(x)=\sqrt{1-cos^2(x)} \\ \\ sen(x)=\sqrt{1-\frac{1}{16}} \\ \\ sen(x)=\sqrt{\frac{15}{16}} \\ \\ sen(x)=\frac{\sqrt{15}}{4}[/tex]

2)

[tex]cos(x)=\sqrt{1-sen^2(x)} \\ \\ cos(x)=\sqrt{1-(-\frac{12}{13})^2} \\ \\ cos(x)=\sqrt{1-\frac{144}{169}} \\ \\ cos(x)=\sqrt{\frac{25}{169}}=\frac{5}{13} [/tex]

Mas como x é do 3o quadrante, [tex]cos(x)=-\frac{5}{13}[/tex]
1-  Sendo cos(x) =1/4, quanto vale sen(x) para  x no intervalo 0 < x <pi/2?
                                        
      senx= V1- (cosx)^2
                                      
      senx= V1- (1/4)^2
                                  
      senx = V1-1/16
   
       senx = V16-1  ==> senx = V15
                    V16                            4
2- Se sen(x) = -12/13 com o x n terceiro quadrannte, determine cos(x):

                                   
cosx= V1- (senx)^2
                                      
      cosx= V1- (12/13)^2
                                         
      cosx = V1-144/169
                                      
       cosx = V169-144  ==> cosx = V25
                    V169                             V169                                 
      
        cosx = - 5
                      13
Agradecemos seu tempo em nosso site. Não hesite em retornar sempre que tiver mais perguntas ou precisar de esclarecimentos adicionais. Obrigado por passar por aqui. Nos esforçamos para fornecer as melhores respostas para todas as suas perguntas. Até a próxima. Sistersinspirit.ca, sua fonte confiável de respostas. Não se esqueça de voltar para mais informações.