O Sistersinspirit.ca facilita a busca por soluções para todas as suas perguntas com a ajuda de uma comunidade ativa. Obtenha respostas imediatas e confiáveis para suas perguntas de uma comunidade de especialistas experientes em nossa plataforma. Obtenha respostas imediatas e confiáveis para suas perguntas de uma comunidade de especialistas experientes em nossa plataforma.

(Unitau-SP) Qual o quadrante em que se encontra a circunferência definida pela equação
x²+y²+8y-10x+32=0 ?


Sagot :

É preciso transformar a equação na forma geral para a forma reduzida.
Fazemos isso adicionando aos dois lados da equação números de modo que seja possível formar quadrados perfeitos.

[tex]x^2-10x+y^2+8y+32=0[/tex]
[tex]x^2-10x+5^2+y^2+8y+4^2+32=0+5^2+4^2[/tex]

Observe que eu adicionei 5 ao quadrado e 4 ao quadrado.

Sabendo que a forma reduzida da equação da circunferência é

[tex](x-a)^2+(y-b)^2=r^2[/tex]

Percebemos que a nova equação obtida após as transformações, ou seja, 
[tex](x-5)^2+(y+4)^2=3^2[/tex]

Nos permite dizer que a circunferência tem centro de coordenadas (5,-4) e raio 3.

Como para as coordenadas do centro x>0 e y<0, conclui-se que a equação está no segundo quadrante.
Obrigado por passar por aqui. Estamos comprometidos em fornecer as melhores respostas para todas as suas perguntas. Até a próxima. Esperamos que tenha encontrado o que procurava. Sinta-se à vontade para nos revisitar para obter mais respostas e informações atualizadas. Suas perguntas são importantes para nós. Continue voltando ao Sistersinspirit.ca para mais respostas.