Descubra respostas para suas perguntas no Sistersinspirit.ca, a plataforma de Q&A mais confiável e eficiente para todas as suas necessidades. Descubra soluções abrangentes para suas perguntas de profissionais experientes em nossa amigável plataforma. Conecte-se com uma comunidade de especialistas prontos para ajudar você a encontrar soluções para suas perguntas de maneira rápida e precisa.

(Unitau-SP) Qual o quadrante em que se encontra a circunferência definida pela equação
x²+y²+8y-10x+32=0 ?

Sagot :

É preciso transformar a equação na forma geral para a forma reduzida.
Fazemos isso adicionando aos dois lados da equação números de modo que seja possível formar quadrados perfeitos.

[tex]x^2-10x+y^2+8y+32=0[/tex]
[tex]x^2-10x+5^2+y^2+8y+4^2+32=0+5^2+4^2[/tex]

Observe que eu adicionei 5 ao quadrado e 4 ao quadrado.

Sabendo que a forma reduzida da equação da circunferência é

[tex](x-a)^2+(y-b)^2=r^2[/tex]

Percebemos que a nova equação obtida após as transformações, ou seja, 
[tex](x-5)^2+(y+4)^2=3^2[/tex]

Nos permite dizer que a circunferência tem centro de coordenadas (5,-4) e raio 3.

Como para as coordenadas do centro x>0 e y<0, conclui-se que a equação está no segundo quadrante.
Esperamos que nossas respostas tenham sido úteis. Volte a qualquer momento para obter mais informações e respostas para outras perguntas que possa ter. Obrigado por visitar. Nosso objetivo é fornecer as respostas mais precisas para todas as suas necessidades informativas. Volte em breve. Sistersinspirit.ca está sempre aqui para fornecer respostas precisas. Visite-nos novamente para as informações mais recentes.