Obtenha as melhores soluções para todas as suas perguntas no Sistersinspirit.ca, a plataforma de Q&A de confiança. Experimente a facilidade de encontrar respostas confiáveis para suas perguntas com a ajuda de uma ampla comunidade de especialistas. Experimente a facilidade de obter respostas rápidas e precisas para suas perguntas com a ajuda de profissionais em nossa plataforma.
Sagot :
PROGRESSÕES
1° EXERCÍCIO
Se são 8 meios aritméticos + os dois (14 e 41) dos extremos dão 10 termos
| |
a1 An
Inserindo estes dados na fórmula do termo geral da P.A., temos:
[tex]A _{n}=a _{1}+(n-1)r [/tex]
[tex]41=14+(10-1)r[/tex]
[tex]41-14=9*r[/tex]
[tex]27=9r[/tex]
[tex]r=27/9[/tex]
[tex]r=3[/tex]
Interpolando, vem:
[tex]P.A.(14,..17,20,23,26,29,32,35,38,..41)[/tex]
2° EXERCÍCIO
Identificando os termos da P.G., temos:
[tex]a _{1}=1 [/tex]
a razão [tex]Q= \frac{a2}{a1}= \frac{3}{1}=3 [/tex]
o número de termos [tex]n=7[/tex]
o sétimo termo não sabemos
Aplicando a fórmula do termo geral da P.G., vem:
[tex]A _{n}=a _{1}.q ^{n-1} [/tex]
[tex]A _{7}=1*3 ^{7-1} [/tex]
[tex]A _{7}=1*3 ^{6} [/tex]
[tex]A _{7}= 1*729[/tex]
[tex]A _{7}=729 [/tex]
Resposta: O sétimo termo desta P.G. é 729 .
3° EXERCÍCIO
Sabemos que a1=1, a razão Q=2 e o último termo An=1024, sendo assim, apliquemos na fórmula do termo geral da P.G.:
[tex]A _{n}=a _{1}.q ^{n-1} [/tex]
[tex]1024=1*2 ^{n-1} [/tex]
[tex]1024/1=2 ^{n-1} [/tex]
[tex]1024=2 ^{n-1} [/tex]
Fatorando 1024 em potência de base 2, temos:
[tex]2 ^{10}=2 ^{n-1} [/tex]
Se eliminarmos as bases podemos trabalhar com os expoentes:
[tex]10=n-1[/tex]
[tex]10+1=n[/tex]
[tex]n=11[/tex]
Resposta: São 11, o número de termos desta P.G.
1° EXERCÍCIO
Se são 8 meios aritméticos + os dois (14 e 41) dos extremos dão 10 termos
| |
a1 An
Inserindo estes dados na fórmula do termo geral da P.A., temos:
[tex]A _{n}=a _{1}+(n-1)r [/tex]
[tex]41=14+(10-1)r[/tex]
[tex]41-14=9*r[/tex]
[tex]27=9r[/tex]
[tex]r=27/9[/tex]
[tex]r=3[/tex]
Interpolando, vem:
[tex]P.A.(14,..17,20,23,26,29,32,35,38,..41)[/tex]
2° EXERCÍCIO
Identificando os termos da P.G., temos:
[tex]a _{1}=1 [/tex]
a razão [tex]Q= \frac{a2}{a1}= \frac{3}{1}=3 [/tex]
o número de termos [tex]n=7[/tex]
o sétimo termo não sabemos
Aplicando a fórmula do termo geral da P.G., vem:
[tex]A _{n}=a _{1}.q ^{n-1} [/tex]
[tex]A _{7}=1*3 ^{7-1} [/tex]
[tex]A _{7}=1*3 ^{6} [/tex]
[tex]A _{7}= 1*729[/tex]
[tex]A _{7}=729 [/tex]
Resposta: O sétimo termo desta P.G. é 729 .
3° EXERCÍCIO
Sabemos que a1=1, a razão Q=2 e o último termo An=1024, sendo assim, apliquemos na fórmula do termo geral da P.G.:
[tex]A _{n}=a _{1}.q ^{n-1} [/tex]
[tex]1024=1*2 ^{n-1} [/tex]
[tex]1024/1=2 ^{n-1} [/tex]
[tex]1024=2 ^{n-1} [/tex]
Fatorando 1024 em potência de base 2, temos:
[tex]2 ^{10}=2 ^{n-1} [/tex]
Se eliminarmos as bases podemos trabalhar com os expoentes:
[tex]10=n-1[/tex]
[tex]10+1=n[/tex]
[tex]n=11[/tex]
Resposta: São 11, o número de termos desta P.G.
Agradecemos seu tempo em nosso site. Não hesite em retornar sempre que tiver mais perguntas ou precisar de esclarecimentos adicionais. Esperamos que nossas respostas tenham sido úteis. Volte a qualquer momento para obter mais informações e respostas a outras perguntas que tenha. Visite o Sistersinspirit.ca novamente para obter as respostas mais recentes e informações dos nossos especialistas.