Descubra respostas para suas perguntas no Sistersinspirit.ca, a plataforma de Q&A mais confiável e eficiente para todas as suas necessidades. Explore soluções abrangentes para suas perguntas de uma ampla gama de profissionais em nossa plataforma amigável. Obtenha respostas detalhadas e precisas para suas perguntas de uma comunidade dedicada de especialistas em nossa plataforma de perguntas e respostas.
Sagot :
SISTEMA DE EQUAÇÕES DO 1° GRAU
Método da Adição:
[tex] \left \{ {{x+y=10(I)} \atop {x+3y=14(II)}} \right. [/tex]
multiplicando a equação I por -1, temos:
[tex] \left \{ {{-x-y=-10(I)} \atop {x+3y=14(II)}} \right. [/tex]
Somando as duas equações, temos:
[tex]2y=4[/tex]
[tex]y=4/2[/tex]
[tex]y=2[/tex]
Substituindo y em uma das equações, por exemplo na equação I, temos:
[tex]x+y=10[/tex]
[tex]x+2=10[/tex]
[tex]x=10-2[/tex]
[tex]x=8[/tex]
Método da Substituição:
[tex] \left \{ {{x+y=10(I)} \atop {x+3y=14(II)}} \right. [/tex]
Inicialmente vamos isolar y na equação I e substituir na equação II, assim:
[tex]y=10-x(I)[/tex]
[tex]x+3(10-x)=14[/tex]
[tex]x+30-3x=14[/tex]
[tex]x-3x=14-30[/tex]
[tex]-2x=-16[/tex]
[tex]x=-16/-2[/tex]
[tex]x=8[/tex]
Substituindo em uma das equações, por exemplo na 1a, vem:
[tex]x+y=10[/tex]
[tex]8+y=10[/tex]
[tex]y=10-8[/tex]
[tex]y=2[/tex]
Método da Comparação:
[tex] \left \{ {{x+y=10(I)} \atop {x+3y=14(II)}} \right. [/tex]
Neste método, isolamos uma das variáveis nas duas equações afim compara-las, vamos isolar x para descobrirmos y, assim:
[tex]x=10-y(I)[/tex] e [tex]x=14-3y[/tex]
Comparando x = x, vem:
[tex]10-y=14-3y[/tex]
[tex]10-14=-3y+y[/tex]
[tex]-4=-2y[/tex]
[tex]y=-4/-2[/tex]
[tex]y=2[/tex]
Agora substituímos mais uma vez...
[tex]x+3y=14[/tex]
[tex]x+3*2=14[/tex]
[tex]x+6=14[/tex]
[tex]x=14-6[/tex]
[tex]x=8[/tex]
Solução: x,y {(8, 2)}
Método da Adição:
[tex] \left \{ {{x+y=10(I)} \atop {x+3y=14(II)}} \right. [/tex]
multiplicando a equação I por -1, temos:
[tex] \left \{ {{-x-y=-10(I)} \atop {x+3y=14(II)}} \right. [/tex]
Somando as duas equações, temos:
[tex]2y=4[/tex]
[tex]y=4/2[/tex]
[tex]y=2[/tex]
Substituindo y em uma das equações, por exemplo na equação I, temos:
[tex]x+y=10[/tex]
[tex]x+2=10[/tex]
[tex]x=10-2[/tex]
[tex]x=8[/tex]
Método da Substituição:
[tex] \left \{ {{x+y=10(I)} \atop {x+3y=14(II)}} \right. [/tex]
Inicialmente vamos isolar y na equação I e substituir na equação II, assim:
[tex]y=10-x(I)[/tex]
[tex]x+3(10-x)=14[/tex]
[tex]x+30-3x=14[/tex]
[tex]x-3x=14-30[/tex]
[tex]-2x=-16[/tex]
[tex]x=-16/-2[/tex]
[tex]x=8[/tex]
Substituindo em uma das equações, por exemplo na 1a, vem:
[tex]x+y=10[/tex]
[tex]8+y=10[/tex]
[tex]y=10-8[/tex]
[tex]y=2[/tex]
Método da Comparação:
[tex] \left \{ {{x+y=10(I)} \atop {x+3y=14(II)}} \right. [/tex]
Neste método, isolamos uma das variáveis nas duas equações afim compara-las, vamos isolar x para descobrirmos y, assim:
[tex]x=10-y(I)[/tex] e [tex]x=14-3y[/tex]
Comparando x = x, vem:
[tex]10-y=14-3y[/tex]
[tex]10-14=-3y+y[/tex]
[tex]-4=-2y[/tex]
[tex]y=-4/-2[/tex]
[tex]y=2[/tex]
Agora substituímos mais uma vez...
[tex]x+3y=14[/tex]
[tex]x+3*2=14[/tex]
[tex]x+6=14[/tex]
[tex]x=14-6[/tex]
[tex]x=8[/tex]
Solução: x,y {(8, 2)}
Obrigado por passar por aqui. Estamos comprometidos em fornecer as melhores respostas para todas as suas perguntas. Até a próxima. Obrigado por passar por aqui. Nos esforçamos para fornecer as melhores respostas para todas as suas perguntas. Até a próxima. Obrigado por usar o Sistersinspirit.ca. Volte novamente para obter mais conhecimento dos nossos especialistas.