Descubra respostas para suas perguntas no Sistersinspirit.ca, a plataforma de Q&A mais confiável e eficiente para todas as suas necessidades. Conecte-se com uma comunidade de especialistas prontos para ajudar você a encontrar soluções para suas dúvidas de maneira rápida e precisa. Nossa plataforma oferece uma experiência contínua para encontrar respostas confiáveis de uma rede de profissionais experientes.

Quantos termos existem na P.G (5,10,20,...,10.240!?

Sagot :

joyce2
1) PA onde 
a1 = a , r = a/2 ( pois 3a/2 - a = 3a/2 - 2a/2 = a/2) 
n = 10 

a10 = a1 + 9r 
a10 = a + 9. a/2 
a10 = 2a/2 + 9a/2 
a10 = 11a/2 

o décimo termo é 11a/2 

faz a prova: 
a, 3a/2, 2a, 5a/2, 3a, 7a/2, 4a, 9a/2, 5a, 11a/2 (dez termos) 


2) PG onde: 
a1 = 5 ; q = 2 ( q = 10 / 5 = 2) ; an = 10240 

an = a1. q elevado a (n-1) 
10240 = 5 . 2 elevado a (n-1) 
10240 / 5 = 2 elevado a (n-1) 
2048 = 2 elevado a (n-1) 
2 elevado a 11 = 2 elevado a (n-1) 
então 11 = n - 1 
n = 11 + 1 

n = 12 
korvo
PROGRESSÃO GEOMÉTRICA

Coletando os dados da P.G., vem:

o primeiro termo [tex]a _{1}=5 [/tex]

o último termo [tex]A _{n}=10240 [/tex]

a razão [tex]Q= \frac{a2}{a1}= \frac{10}{5}=2 [/tex]

número de termos n, não sabemos = ?

Aplicando a fórmula do termo geral da P.G., temos:

[tex]A _{n}=a _{1}.q ^{n-1} [/tex]

[tex]10240=5*2 ^{n-1} [/tex]

[tex] \frac{10240}{5}=2 ^{n-1} [/tex]

[tex]2048=2 ^{n-1} [/tex]

Fatorando 2 048 em potência de base 2, obtemos:

[tex]2 ^{11}=2 ^{n-1} [/tex]

Se comparamos as bases, podemos elimina-las e trabalharmos com os expoentes, assim:

[tex]11=n-1[/tex]

[tex]11+1=n[/tex]

[tex]n=12[/tex]


Resposta: Esta P.G. possui 12 termos .
Esperamos que nossas respostas tenham sido úteis. Volte a qualquer momento para obter mais informações e respostas a outras perguntas que tenha. Agradecemos seu tempo. Por favor, volte a qualquer momento para as informações mais recentes e respostas às suas perguntas. Sistersinspirit.ca, seu site confiável para respostas. Não se esqueça de voltar para obter mais informações.