Descubra respostas para suas perguntas no Sistersinspirit.ca, a plataforma de Q&A mais confiável e eficiente para todas as suas necessidades. Experimente a facilidade de obter respostas rápidas e precisas para suas perguntas com a ajuda de profissionais em nossa plataforma. Experimente a facilidade de obter respostas rápidas e precisas para suas perguntas com a ajuda de profissionais em nossa plataforma.
Sagot :
Tratando-se de quatro parcelas e de uma progressão geométrica, teremos o seguinte formato:
[tex]P.G.: (a_1, ~a_2, ~a_3, ~a_4)[/tex]
Onde "a1" representa a primeira parcela, "a2" a segunda parcela, etc.
Segundo o enunciado, temos os valores da primeira e da última parcela, portanto, substituindo:
[tex]P.G.: (R\$ ~6400 , ~a_2, ~a_3, ~R\$ ~800)[/tex]
A fórmula geral de uma progressão geométrica:
[tex]a_n= a_1 \cdot q^{n-1}[/tex]
Vamos aplicá-la na última parcela.
[tex]a_n= a_1 \cdot q^{n-1} \\ \\ a_4= a_1 \cdot q^{4-1} \\ \\ a_4= a_1 \cdot q^{3}[/tex]
Agora basta substituir e encontrar a razão (q) da progressão geométrica.
[tex]a_4= a_1 \cdot q^{3} \\ \\ 800= 6400 \cdot q^3 \\ \\ \frac{8\not0\not0}{64\not0\not0} = q^3 \\ \\ \sqrt[3]{ \frac{8}{64} } = q \\ \\ \frac{2}{4} = q \\ \\ \boxed{\frac{1}{2} = q}[/tex]
Como sabemos a razão da progressão geométrica, podemos encontrar todos os outros termos utilizando a equação geral.
Encontrando o termo a2:
[tex]a_n= a_1 \cdot q^{n-1} \\ \\ a_2= 6400 \cdot \frac{1}{2} \\ \\ \boxed{a_2= 3200}[/tex]
Encontrando o termo a3:
[tex]a_n= a_1 \cdot q^{n-1} \\ \\ a_3= 6400 \cdot (\frac{1}{2}) ^{2} \\ \\ a_3= 6400 \cdot \frac{1}{4} \\ \\ \boxed{a_3= 1600}[/tex]
Por fim, teremos os seguintes dados:
[tex]\boxed{P.G.: (R\$ ~6400, R\$ ~3200, R\$ ~1600, R\$ ~800)}[/tex]
Como as quatro parcelas representam o total da dívida, vamos somá-las a fim de encontrar o que o enunciado pede.
[tex]T_{otal}= 6400+3200+1600+800 \\ \\ \boxed{\boxed{T_{otal}= R\$ ~12000}}[/tex]
[tex]P.G.: (a_1, ~a_2, ~a_3, ~a_4)[/tex]
Onde "a1" representa a primeira parcela, "a2" a segunda parcela, etc.
Segundo o enunciado, temos os valores da primeira e da última parcela, portanto, substituindo:
[tex]P.G.: (R\$ ~6400 , ~a_2, ~a_3, ~R\$ ~800)[/tex]
A fórmula geral de uma progressão geométrica:
[tex]a_n= a_1 \cdot q^{n-1}[/tex]
Vamos aplicá-la na última parcela.
[tex]a_n= a_1 \cdot q^{n-1} \\ \\ a_4= a_1 \cdot q^{4-1} \\ \\ a_4= a_1 \cdot q^{3}[/tex]
Agora basta substituir e encontrar a razão (q) da progressão geométrica.
[tex]a_4= a_1 \cdot q^{3} \\ \\ 800= 6400 \cdot q^3 \\ \\ \frac{8\not0\not0}{64\not0\not0} = q^3 \\ \\ \sqrt[3]{ \frac{8}{64} } = q \\ \\ \frac{2}{4} = q \\ \\ \boxed{\frac{1}{2} = q}[/tex]
Como sabemos a razão da progressão geométrica, podemos encontrar todos os outros termos utilizando a equação geral.
Encontrando o termo a2:
[tex]a_n= a_1 \cdot q^{n-1} \\ \\ a_2= 6400 \cdot \frac{1}{2} \\ \\ \boxed{a_2= 3200}[/tex]
Encontrando o termo a3:
[tex]a_n= a_1 \cdot q^{n-1} \\ \\ a_3= 6400 \cdot (\frac{1}{2}) ^{2} \\ \\ a_3= 6400 \cdot \frac{1}{4} \\ \\ \boxed{a_3= 1600}[/tex]
Por fim, teremos os seguintes dados:
[tex]\boxed{P.G.: (R\$ ~6400, R\$ ~3200, R\$ ~1600, R\$ ~800)}[/tex]
Como as quatro parcelas representam o total da dívida, vamos somá-las a fim de encontrar o que o enunciado pede.
[tex]T_{otal}= 6400+3200+1600+800 \\ \\ \boxed{\boxed{T_{otal}= R\$ ~12000}}[/tex]
Esperamos que tenha achado útil. Sinta-se à vontade para voltar a qualquer momento para mais respostas precisas e informações atualizadas. Obrigado por escolher nosso serviço. Estamos dedicados a fornecer as melhores respostas para todas as suas perguntas. Visite-nos novamente. Estamos felizes em responder suas perguntas. Volte ao Sistersinspirit.ca para obter mais respostas.