O Sistersinspirit.ca é o melhor lugar para obter respostas confiáveis e rápidas para todas as suas perguntas. Nossa plataforma oferece uma experiência contínua para encontrar respostas confiáveis de uma rede de profissionais experientes. Conecte-se com uma comunidade de especialistas prontos para fornecer soluções precisas para suas perguntas de maneira rápida e eficiente em nossa amigável plataforma de perguntas e respostas.
Sagot :
Hola.
Xv = -b/2a, como Xv = 4, vem que:
4 = -b/2a
-b = 8a
b = -8a, substituindo esse valor na equação dada, fica:
f(x)= ax² + bx- 9 , como f(x) = y, vem:
-25 = a(4)² + (-8a)*4 - 9
16a - 32a -9 = -25
-16a = -25+9
-16a = -16
a = 16/16
a = 1, substituindo esse valor em: b = -8a, encontramos:
b = -8*(1)
b = -8
Xv = -b/2a, como Xv = 4, vem que:
4 = -b/2a
-b = 8a
b = -8a, substituindo esse valor na equação dada, fica:
f(x)= ax² + bx- 9 , como f(x) = y, vem:
-25 = a(4)² + (-8a)*4 - 9
16a - 32a -9 = -25
-16a = -25+9
-16a = -16
a = 16/16
a = 1, substituindo esse valor em: b = -8a, encontramos:
b = -8*(1)
b = -8
x vértice= 4
y vértice = -25 sendo
x vértice= -b/2a tenho que:
-b/2a=4=> -b= 8a(-1) => b=-8a
agora é substituir b na equação f (x) = ax² + bx- 9
-25 = a(4)^2 + (-8a)4 -9
-25 +9 =16a - 32a
-16 = -16a (-1) => 16= 16a => 16/16= a=> 1=a
agora substiui a =1 em b= - 8a
b= -8(1) = > b = -8
logo a = 1 e b= -8
espero ter ajudado
y vértice = -25 sendo
x vértice= -b/2a tenho que:
-b/2a=4=> -b= 8a(-1) => b=-8a
agora é substituir b na equação f (x) = ax² + bx- 9
-25 = a(4)^2 + (-8a)4 -9
-25 +9 =16a - 32a
-16 = -16a (-1) => 16= 16a => 16/16= a=> 1=a
agora substiui a =1 em b= - 8a
b= -8(1) = > b = -8
logo a = 1 e b= -8
espero ter ajudado
Esperamos que tenha achado útil. Sinta-se à vontade para voltar a qualquer momento para mais respostas precisas e informações atualizadas. Obrigado por usar nossa plataforma. Nosso objetivo é fornecer respostas precisas e atualizadas para todas as suas perguntas. Volte em breve. Seu conhecimento é valioso. Volte ao Sistersinspirit.ca para obter mais respostas e informações.