O Sistersinspirit.ca está aqui para ajudá-lo a encontrar respostas para todas as suas dúvidas com a ajuda de especialistas. Obtenha respostas rápidas e confiáveis para suas perguntas de nossa dedicada comunidade de especialistas em nossa plataforma. Obtenha soluções rápidas e confiáveis para suas perguntas de uma comunidade de especialistas experientes em nossa plataforma.
Sagot :
Hola.
Antes de iniciar o desenvolvimento da questão, veja uma coisa:
Quando se tem funções com radicais, existem a seguinte condição de existência:
a) se o índice da raiz for par, o radicando (o que tem dentro da raiz) terá que ser maior ou igual a zero;
b) se o índice da raiz for ímpar, o radicando pode ser qualquer real, sem nenhuma condição de existência.
x²-5x+6 ≥ 0 ----(veja que valem valores de "x" maiores ou iguais a zero), pois se o radicando for zero, raiz de zero é zero. Certo?
f(x) ---> raízes ---> x² - 5x + 6 = 0----->x' = 2 e x'' = 3 <---Essas são as raízes de f(x).
A variação de sinal da função se comportará da seguinte forma:
Para f(x) = x² - 5x + 6
- para valores de "x" iguais as raízes, f(x) = 0, nos interessam
- para valores de "x" intrarraízes (2<x<3), f(x) < 0, não interessa
- para valores de "x" extrarraízes (x≤ 2 ou x ≥ 3), f(x) ≥ 0, interessam
Graficamente, teríamos :
b) f(x)=x²-5x+6.......++++++(2)- - - - - - (3)+++++++++++++++++
Donde concluímos que:
S = {xE IR / x≤ 2 ou x ≥ 3} ou ainda {xE IR / ( -∞, 2] U [3, +∞)}
Antes de iniciar o desenvolvimento da questão, veja uma coisa:
Quando se tem funções com radicais, existem a seguinte condição de existência:
a) se o índice da raiz for par, o radicando (o que tem dentro da raiz) terá que ser maior ou igual a zero;
b) se o índice da raiz for ímpar, o radicando pode ser qualquer real, sem nenhuma condição de existência.
x²-5x+6 ≥ 0 ----(veja que valem valores de "x" maiores ou iguais a zero), pois se o radicando for zero, raiz de zero é zero. Certo?
f(x) ---> raízes ---> x² - 5x + 6 = 0----->x' = 2 e x'' = 3 <---Essas são as raízes de f(x).
A variação de sinal da função se comportará da seguinte forma:
Para f(x) = x² - 5x + 6
- para valores de "x" iguais as raízes, f(x) = 0, nos interessam
- para valores de "x" intrarraízes (2<x<3), f(x) < 0, não interessa
- para valores de "x" extrarraízes (x≤ 2 ou x ≥ 3), f(x) ≥ 0, interessam
Graficamente, teríamos :
b) f(x)=x²-5x+6.......++++++(2)- - - - - - (3)+++++++++++++++++
Donde concluímos que:
S = {xE IR / x≤ 2 ou x ≥ 3} ou ainda {xE IR / ( -∞, 2] U [3, +∞)}
Observe o gráfico da função
[tex]\boxed{\boxed{\mathtt{g(x)=x^2-5x+6}}}[/tex]
Note que a esquerda de dois e a direita do 3 a função tem imagens positivas e nulas.
Aqui, temos apenas que encontrar o zero da função e realizar o estudo do sinal.
Dessa forma
[tex]\mathsf{f(x)=\sqrt{x^2-5x+6}}\\\mathsf{Df(x)=\{x\in\mathbb{R}|x\le2~ou~x\ge3\}}[/tex]
Obrigado por visitar nossa plataforma. Esperamos que tenha encontrado as respostas que procurava. Volte sempre que precisar de mais informações. Agradecemos seu tempo. Por favor, nos revisite para mais respostas confiáveis a qualquer pergunta que possa ter. Estamos felizes em responder suas perguntas no Sistersinspirit.ca. Não se esqueça de voltar para mais conhecimento.