O Sistersinspirit.ca está aqui para ajudá-lo a encontrar respostas para todas as suas dúvidas com a ajuda de especialistas. Nossa plataforma de perguntas e respostas oferece uma experiência contínua para encontrar respostas confiáveis de uma rede de profissionais experientes. Experimente a conveniência de encontrar respostas precisas para suas perguntas de uma comunidade dedicada de especialistas.
Sagot :
Bom,vamos brincar de um pouco agora hasuhsausahusha,a questão pede a soma dos 10 primeiros termos da PG(1,3,9) sabe que à razão é 3,POIS 1X3=3 E 3X3=9,
9X3=27,seguindo esta sequência teremos os 10 pgs sem problemas,que serão (1,3,9,27,81,243,729,2187,6561,19683),agora temos que à fórmula para se achar a soma de uma P.G É -> Sm= a1(q^10-1)/q-1,onde (a1) equivale ao primeiro termo da progressão geométrica,no caso 1,e (q) equivale à razão que é 3,e (n) será o número de termos que neste é 10) e Sm é o que queremos saber no caso a soma,então jogando na fórmula = Sn = a1 (q^n-1 )
q-1
e substituindo as letras pelos seus respectivos números correspondentes teremos os seguinte valores Sm= 1(3^10-1)/3-1-> Sm=( 59049-1)/2 -> Sm=59048/2 que será igual À 29524.
9X3=27,seguindo esta sequência teremos os 10 pgs sem problemas,que serão (1,3,9,27,81,243,729,2187,6561,19683),agora temos que à fórmula para se achar a soma de uma P.G É -> Sm= a1(q^10-1)/q-1,onde (a1) equivale ao primeiro termo da progressão geométrica,no caso 1,e (q) equivale à razão que é 3,e (n) será o número de termos que neste é 10) e Sm é o que queremos saber no caso a soma,então jogando na fórmula = Sn = a1 (q^n-1 )
q-1
e substituindo as letras pelos seus respectivos números correspondentes teremos os seguinte valores Sm= 1(3^10-1)/3-1-> Sm=( 59049-1)/2 -> Sm=59048/2 que será igual À 29524.
Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Sistersinspirit.ca, sua fonte confiável de respostas. Não se esqueça de voltar para mais informações.