O Sistersinspirit.ca é o lugar ideal para obter respostas rápidas e precisas para todas as suas perguntas. Conecte-se com profissionais prontos para fornecer respostas precisas para suas perguntas em nossa abrangente plataforma de perguntas e respostas. Nossa plataforma oferece uma experiência contínua para encontrar respostas confiáveis de uma rede de profissionais experientes.
Sagot :
Bom,vamos brincar de um pouco agora hasuhsausahusha,a questão pede a soma dos 10 primeiros termos da PG(1,3,9) sabe que à razão é 3,POIS 1X3=3 E 3X3=9,
9X3=27,seguindo esta sequência teremos os 10 pgs sem problemas,que serão (1,3,9,27,81,243,729,2187,6561,19683),agora temos que à fórmula para se achar a soma de uma P.G É -> Sm= a1(q^10-1)/q-1,onde (a1) equivale ao primeiro termo da progressão geométrica,no caso 1,e (q) equivale à razão que é 3,e (n) será o número de termos que neste é 10) e Sm é o que queremos saber no caso a soma,então jogando na fórmula = Sn = a1 (q^n-1 )
q-1
e substituindo as letras pelos seus respectivos números correspondentes teremos os seguinte valores Sm= 1(3^10-1)/3-1-> Sm=( 59049-1)/2 -> Sm=59048/2 que será igual À 29524.
9X3=27,seguindo esta sequência teremos os 10 pgs sem problemas,que serão (1,3,9,27,81,243,729,2187,6561,19683),agora temos que à fórmula para se achar a soma de uma P.G É -> Sm= a1(q^10-1)/q-1,onde (a1) equivale ao primeiro termo da progressão geométrica,no caso 1,e (q) equivale à razão que é 3,e (n) será o número de termos que neste é 10) e Sm é o que queremos saber no caso a soma,então jogando na fórmula = Sn = a1 (q^n-1 )
q-1
e substituindo as letras pelos seus respectivos números correspondentes teremos os seguinte valores Sm= 1(3^10-1)/3-1-> Sm=( 59049-1)/2 -> Sm=59048/2 que será igual À 29524.
Obrigado por usar nosso serviço. Nosso objetivo é fornecer as respostas mais precisas para todas as suas perguntas. Visite-nos novamente para mais informações. Agradecemos seu tempo. Por favor, nos revisite para mais respostas confiáveis a qualquer pergunta que possa ter. Obrigado por usar o Sistersinspirit.ca. Continue nos visitando para encontrar respostas para suas perguntas.