Bem-vindo ao Sistersinspirit.ca, onde você pode obter respostas rápidas e precisas com a ajuda de especialistas. Experimente a conveniência de obter respostas precisas para suas perguntas de uma comunidade dedicada de profissionais. Nossa plataforma oferece uma experiência contínua para encontrar respostas confiáveis de uma rede de profissionais experientes.

Sabe-se que o número complexo i é solução da equação x^4 - 3x² - 4 = 0. Então:

a) essa equação tem uma solução de multiplicidade 2.
b) as soluções dessa equação formam uma progressão.
c) a equação tem duas soluções reais irracionais.
d) a equação tem duas soluções reais racionais.
e) a equação não tem soluções reais. 


Sagot :


x^4 - 3x² - 4 = 0

   x^2 = y

y^2 - 3y - 4 = 0

delta = (-3)^2 - 4.1.4= 9+16==> 25

Y = 3+/- V25==> y = 3 +/- 5
           2.1                       2

y1= 3+5==>y1=4
         2

y2= 3-5==>y2= -1
         2

(x1)^2= y1 ==>(x1)^2= 4==>x1=4

(x2)^2= y2 ==>(x2)^2= -1==>x2= i

letra A

Resposta:

Resposta Letra D

Explicação passo-a-passo:

Se i é raiz, obrigatoriamente -i tambem é raiz. Motivo : Teorema das raízes Imaginárias

Para descobrir as outras duas raízes devemos fazer a pesquisa das raízes Racionais.

Chamarei as raízes de ''R"

R= Divisores do Termo independente/ Divisores do coeficiente dominante

Divisores do Termo independente = { +1,-1,+2,-2,-4,+4}

Divisores do coeficiente dominante = { +1,-1}

Ao testar cada um desses valores no polinômio, descobrimos que apenas "+2" e "-2" satisfazem nossa equação.

Então temos como Raízes: { i, -i, +2, -2, }

Confirmando que a letra D é a correta, pois duas soluções são reais (+2 e -2)

Obrigado por passar por aqui. Estamos comprometidos em fornecer as melhores respostas para todas as suas perguntas. Até a próxima. Obrigado por passar por aqui. Nos esforçamos para fornecer as melhores respostas para todas as suas perguntas. Até a próxima. Sistersinspirit.ca, seu site de referência para respostas precisas. Não se esqueça de voltar para obter mais conhecimento.