Descubra respostas para suas perguntas no Sistersinspirit.ca, a plataforma de Q&A mais confiável e eficiente para todas as suas necessidades. Junte-se à nossa plataforma de perguntas e respostas e obtenha respostas precisas para todas as suas dúvidas com profissionais de várias disciplinas. Obtenha respostas imediatas e confiáveis para suas perguntas de uma comunidade de especialistas experientes em nossa plataforma.
Sagot :
Seja A(3,4), B(6, -1), C(0, 3) e D(2, 0)
Reta AB
[tex]y + 1 = \dfrac{4 + 1}{3 - 6}\times{x - 6} = 3y + 5x = 27[/tex]
Ponto E de cruzamento de AB com eixo X
[tex]y_E = 0[/tex]
[tex]x_E = \frac{27}{4}[/tex]
[tex]E = 5,4[/tex]
Cálculo da área do triângulo ABD:
[tex]S' = \dfrac{(x_E - x_D)\times(y_A - y_B)}{2}[/tex]
[tex]S' = \dfrac{(5,4 - 2)\times(4 + 1)}{2}[/tex]
[tex]S' = 8,5[/tex]
Igualmente para o triângulo ACD:
[tex]S" = \dfrac{(xA + xD)\times{y_A}}{2} - \dfrac{(yA - YC)\times{x_A}}{2} -\dfrac{x_D\times{y_C}}{2} [/tex]
[tex]S" = \dfrac{3 + 2\times4}{2}- \dfrac{4 - 3\times3}{2} - \dfrac{2\times3}{2}[/tex]
[tex]S" = 6,5[/tex]
Somando as duas áreas,
[tex]S = S' + S"[/tex]
[tex]S = 8,5 + 6,5[/tex]
[tex]S = 14 km^2[/tex]
Reta AB
[tex]y + 1 = \dfrac{4 + 1}{3 - 6}\times{x - 6} = 3y + 5x = 27[/tex]
Ponto E de cruzamento de AB com eixo X
[tex]y_E = 0[/tex]
[tex]x_E = \frac{27}{4}[/tex]
[tex]E = 5,4[/tex]
Cálculo da área do triângulo ABD:
[tex]S' = \dfrac{(x_E - x_D)\times(y_A - y_B)}{2}[/tex]
[tex]S' = \dfrac{(5,4 - 2)\times(4 + 1)}{2}[/tex]
[tex]S' = 8,5[/tex]
Igualmente para o triângulo ACD:
[tex]S" = \dfrac{(xA + xD)\times{y_A}}{2} - \dfrac{(yA - YC)\times{x_A}}{2} -\dfrac{x_D\times{y_C}}{2} [/tex]
[tex]S" = \dfrac{3 + 2\times4}{2}- \dfrac{4 - 3\times3}{2} - \dfrac{2\times3}{2}[/tex]
[tex]S" = 6,5[/tex]
Somando as duas áreas,
[tex]S = S' + S"[/tex]
[tex]S = 8,5 + 6,5[/tex]
[tex]S = 14 km^2[/tex]
A área de desmatamento descoberta pelos geólogos, em km², foi de 14.
Vamos utilizar vetores para calcular a área do polígono formado pelos vértices A = (3,4), B = (6,-1), C = (0,3) e D = (2,0).
Observe que podemos dividir o quadrilátero em dois triângulos: ABC e DBC.
Área do triângulo ABC
Os vetores AB e BC são iguais a:
AB = (6,-1) - (3,4)
AB = (6 - 3, -1 - 4)
AB = (3,-5)
e
BC = (0,3) - (6,-1)
BC = (0 - 6, 3 + 1)
BC = (-6,4).
Agora, precisamos calcular o determinante da matriz [tex]\left[\begin{array}{ccc}3&-5\\-6&4\end{array}\right][/tex]. Então:
det = 3.4 - (-6).(-5)
det = 12 - 30
det = -18.
Portanto, a área do triângulo ABC é:
S' = |-18|/2
S' = 18/2
S' = 9 km².
Área do triângulo DBC
Os vetores BC e BD são iguais a:
BC = (-6,4)
e
BD = (2,0) - (6,-1)
BD = (2 - 6, 0 + 1)
BD = (-4,1).
Calculando o determinante da matriz [tex]\left[\begin{array}{ccc}-6&4\\-4&1\end{array}\right][/tex], obtemos:
det = (-6).1 - (-4).4
det = -6 + 16
det = -10.
Portanto, a área do triângulo BDC é igual a:
S'' = |-10|/2
S'' = 10/2
S'' = 5 km².
Assim, podemos concluir que a área desmatada descoberta é igual a
S = 9 + 5
S = 14 km².
Exercício sobre área: https://brainly.com.br/tarefa/9794521

Agradecemos sua visita. Esperamos que as respostas que encontrou tenham sido benéficas. Não hesite em voltar para mais informações. Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Obrigado por usar o Sistersinspirit.ca. Volte novamente para obter mais conhecimento dos nossos especialistas.