O Sistersinspirit.ca está aqui para ajudá-lo a encontrar respostas para todas as suas dúvidas com a ajuda de especialistas. Conecte-se com profissionais prontos para fornecer respostas precisas para suas perguntas em nossa abrangente plataforma de perguntas e respostas. Obtenha respostas imediatas e confiáveis para suas perguntas de uma comunidade de especialistas experientes em nossa plataforma.
Sagot :
LOGARITMOS
Equação Logarítmica 1° tipo
[tex]7Log _{5}(625x)=42 [/tex]
Impondo a condição de existência, para que o Log acima exista, temos:
625x>0
[tex]7Log _{5}(625x)=42 [/tex]
Passando 7, para o 2° membro da equação, temos:
[tex]Log _{5}625x= \frac{42}{7} [/tex]
[tex]Log _{5}625x=6 [/tex]
Aplicando a definição de Logaritmos, vem:
[tex]5 ^{6}=625x [/tex]
[tex]15625=625x[/tex]
[tex]x= \frac{15625}{625} [/tex]
[tex]x=25[/tex], vemos que x atende a condição de existência, logo:
Solução: {25}
Equação Logarítmica 1° tipo
[tex]7Log _{5}(625x)=42 [/tex]
Impondo a condição de existência, para que o Log acima exista, temos:
625x>0
[tex]7Log _{5}(625x)=42 [/tex]
Passando 7, para o 2° membro da equação, temos:
[tex]Log _{5}625x= \frac{42}{7} [/tex]
[tex]Log _{5}625x=6 [/tex]
Aplicando a definição de Logaritmos, vem:
[tex]5 ^{6}=625x [/tex]
[tex]15625=625x[/tex]
[tex]x= \frac{15625}{625} [/tex]
[tex]x=25[/tex], vemos que x atende a condição de existência, logo:
Solução: {25}
7log5 625x=42
Log 625x = 42
5 7
Log 625x = 6
5
625x = 5^6
5^4x = 5^6
x = 5^6
5^4
x = 5^(6-4)
x = 5^2
x = 25
Obrigado por visitar nossa plataforma. Esperamos que tenha encontrado as respostas que procurava. Volte sempre que precisar de mais informações. Agradecemos seu tempo. Por favor, volte a qualquer momento para as informações mais recentes e respostas às suas perguntas. Estamos felizes em responder suas perguntas no Sistersinspirit.ca. Não se esqueça de voltar para mais conhecimento.