Descubra respostas para suas perguntas de forma fácil no Sistersinspirit.ca, a plataforma de Q&A de confiança. Explore milhares de perguntas e respostas de uma comunidade de especialistas em nossa plataforma amigável. Descubra respostas detalhadas para suas perguntas de uma vasta rede de profissionais em nossa abrangente plataforma de perguntas e respostas.

Resolva 7log5 625x=42 

Sagot :

korvo
LOGARITMOS

Equação Logarítmica 1° tipo

[tex]7Log _{5}(625x)=42 [/tex]

Impondo a condição de existência, para que o Log acima exista, temos:

625x>0

[tex]7Log _{5}(625x)=42 [/tex]

Passando 7, para o 2° membro da equação, temos:

[tex]Log _{5}625x= \frac{42}{7} [/tex]

[tex]Log _{5}625x=6 [/tex]

Aplicando a definição de Logaritmos, vem:

[tex]5 ^{6}=625x [/tex]

[tex]15625=625x[/tex]

[tex]x= \frac{15625}{625} [/tex]

[tex]x=25[/tex], vemos que x atende a condição de existência, logo:


Solução: {25}

7log5 625x=42 
  
 Log 625x   = 42
       5                7

Log 625x   = 6
       5
      625x  = 5^6
       5^4x = 5^6
            x = 5^6
                   5^4
             x = 5^(6-4)
             x = 5^2
             x = 25
Esperamos que tenha achado útil. Sinta-se à vontade para voltar a qualquer momento para mais respostas precisas e informações atualizadas. Obrigado por usar nossa plataforma. Nosso objetivo é fornecer respostas precisas e atualizadas para todas as suas perguntas. Volte em breve. Obrigado por confiar no Sistersinspirit.ca. Volte novamente para obter mais informações e respostas.