Bem-vindo ao Sistersinspirit.ca, onde você pode obter respostas rápidas e precisas com a ajuda de especialistas. Conecte-se com uma comunidade de especialistas prontos para fornecer soluções precisas para suas perguntas de maneira rápida e eficiente em nossa amigável plataforma de perguntas e respostas. Descubra um vasto conhecimento de profissionais em diferentes disciplinas em nossa amigável plataforma de perguntas e respostas.
Sagot :
subtração de logs de mesma base: divide-se
log((x + 5)/(x - 4)) = log(10)
mesmo log, se corta.
(x + 5)/(x - 4) = 10
x + 5 = 10(x - 4)
x = 10x - 40 - 5
x - 10x = -45
-9x = -45
x = 45/9
x = 5
log((x + 5)/(x - 4)) = log(10)
mesmo log, se corta.
(x + 5)/(x - 4) = 10
x + 5 = 10(x - 4)
x = 10x - 40 - 5
x - 10x = -45
-9x = -45
x = 45/9
x = 5
LOGARITMOS
Equação Logarítmica 1° tipo
[tex]Log(x+5)+Log(x-4)=Log10[/tex]
Inicialmente vamos impor a condição para que os Logaritmos acima, exista:
(x+5)>0 .:. (x-4)>0
x>-5 x>4
[tex]Log (x+5)+Log(x-4)=Log10[/tex]
Veja que todos os Logaritmos estão na base 10 (pois quando a base do Logaritmo, não está exposta, subintende-se que é base 10), vamos eliminar as bases e aplicar a 1a propriedade dos Logaritmos, a do produto:
[tex](x+5)*(x-4)=10[/tex]
[tex] x^{2}-4x+5x-20=10[/tex]
[tex] x^{2} +x-20-10=0[/tex]
[tex] x^{2} +x-30=0[/tex]
Resolvendo esta equação do 2° grau, obtemos as raízes x'=5 e x"= -6, analisando pela condição imposta acima, vemos que somente a 1a raiz da equação satisfaz a equação, portanto:
Solução: {5}
Equação Logarítmica 1° tipo
[tex]Log(x+5)+Log(x-4)=Log10[/tex]
Inicialmente vamos impor a condição para que os Logaritmos acima, exista:
(x+5)>0 .:. (x-4)>0
x>-5 x>4
[tex]Log (x+5)+Log(x-4)=Log10[/tex]
Veja que todos os Logaritmos estão na base 10 (pois quando a base do Logaritmo, não está exposta, subintende-se que é base 10), vamos eliminar as bases e aplicar a 1a propriedade dos Logaritmos, a do produto:
[tex](x+5)*(x-4)=10[/tex]
[tex] x^{2}-4x+5x-20=10[/tex]
[tex] x^{2} +x-20-10=0[/tex]
[tex] x^{2} +x-30=0[/tex]
Resolvendo esta equação do 2° grau, obtemos as raízes x'=5 e x"= -6, analisando pela condição imposta acima, vemos que somente a 1a raiz da equação satisfaz a equação, portanto:
Solução: {5}
Esperamos que esta informação tenha sido útil. Sinta-se à vontade para voltar a qualquer momento para obter mais respostas às suas perguntas e preocupações. Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Obrigado por visitar Sistersinspirit.ca. Volte em breve para mais informações úteis e respostas dos nossos especialistas.