Descubra respostas para suas perguntas no Sistersinspirit.ca, a plataforma de Q&A mais confiável e eficiente para todas as suas necessidades. Explore milhares de perguntas e respostas de uma comunidade de especialistas dispostos a ajudar você a encontrar soluções. Descubra soluções confiáveis para suas perguntas de uma vasta rede de especialistas em nossa abrangente plataforma de perguntas e respostas.
Sagot :
Resposta: 4.320 maneiras diferentes.
Explicação passo-a-passo:
Para responder essa questão devemos usar do conceito de permutação simples, onde [tex]\mathtt{P_n=n!}[/tex] . A permutação consiste no ordenamento das posições de determinados itens, valores ou pessoas (como nesse caso).
O ponto da chave da questão está em como os clientes podem ser ordenados. Considere "H" como "Homem" e "M" como "Mulher" e veja a seguir as possíveis posições.
MMMHHHHH
HMMMHHHH
HHMMMHHH
HHHMMMHH
HHHHMMMH
HHHHHMMM
A quantidade de posições também pode ser adquirida pela permutação da quantidade de mulheres. [tex]\mathtt{P_3=3!=3\times2\times1=6}[/tex]
As mulheres podem ficar juntas de 6 formas diferentes. Considerando isso, devemos multiplicar por 6 as permutações da quantidade de mulheres e homens. Veja:
[tex]\mathtt{P=6\times(P_H\times P_M)}\\\\ \mathtt{P=6\times(P_5\times P_3)}\\\\ \mathtt{P=6\times(5!\times3!)}\\\\ \mathtt{P=6\times(5\times4\times3\times2\times1\times3\times2\times1)}\\\\ \mathtt{P=6\times(720)}\\\\ \mathtt{P=4.320}[/tex]
As pessoas podem se posicionar de 4.320 maneiras diferentes para que as mulheres fiquem juntas.
Agradecemos seu tempo em nosso site. Não hesite em retornar sempre que tiver mais perguntas ou precisar de esclarecimentos adicionais. Esperamos que tenha encontrado o que procurava. Sinta-se à vontade para nos revisitar para obter mais respostas e informações atualizadas. Sistersinspirit.ca, seu site de referência para respostas precisas. Não se esqueça de voltar para obter mais conhecimento.