Bem-vindo ao Sistersinspirit.ca, onde você pode obter respostas rápidas e precisas com a ajuda de especialistas. Obtenha respostas detalhadas para suas perguntas de uma comunidade dedicada de especialistas em nossa plataforma. Descubra um vasto conhecimento de profissionais em diferentes disciplinas em nossa amigável plataforma de perguntas e respostas.
Sagot :
1-> Considere a função f(x) = (3m - 21)x² +
2mx-1. Determine para quais valores de m, a função tem como gráfico uma
parábola com concavidade voltada para Baixo ?
Para ter a concavidade para baixo o a termo “a” deve ser menor que zero, ou seja, 3m-21 < 0.
Resolvendo, temos:
3m-21<0
3m < 21
m< 21/3
m< 7 .
Resposta: Para qualquer m, menor que 7, a parábola terá a concavidade para baixo.
2-> O gráfico quadrático f(x) = x² + ax - 1 passa pelo ponto (2, -3). qual é o valor de a?
Se o gráfico passa por (2,-3), temos:
x^2 +a.x – 1 = y
(2)^2 + a.2 – 1 = -3
4 + 2a – 1 = -3
2a + 3 = -3
2a = -3 -3
2a = -6
a = -6/2
a = -3
3-> Determine o conjunto de imagem da função f(x) = 3x² - 5x + 2 de o domínio real: Para descobrir o conjunto imagem, temos: Todos os números que fazem parte do eixo Y e que fazem parte do gráfico. Então vamos calcular o vértice do
Yv = - Delta/4.a
Yv = - Delta/4a
Yv = -( b^2 – 4.a.c )/4.a
Yv = -[ (-5)^2 – 4.3.2) ] / 4.3
Yv = -[ 25 – 24 ] /12
Yv = - 1/12
Conjunto Imagem é formado por todos os números reais maiores ou igual a -1/12.
4-> Determine o valor de K para que a função f(x)= x² - 3x +(k - 2) tenha duas raízes e diferentes
Para que a função tenha duas raízes e diferentes o Delta precisa ser maior que zero.
Então, temos:
Delta = b^2 -4.a.c
b^2 -4.a.c > 0
Substituindo, temos:
(-3)^2 – 4. (1).(k-2)
(-3)^2 – 4. (1).(k-2) >0
9 - 4(k-2) > 0
9 - 4k + 8 > 0
17 – 4k >0
-4k > -17
K > -17/-4
K > 17/4
Para ter a concavidade para baixo o a termo “a” deve ser menor que zero, ou seja, 3m-21 < 0.
Resolvendo, temos:
3m-21<0
3m < 21
m< 21/3
m< 7 .
Resposta: Para qualquer m, menor que 7, a parábola terá a concavidade para baixo.
2-> O gráfico quadrático f(x) = x² + ax - 1 passa pelo ponto (2, -3). qual é o valor de a?
Se o gráfico passa por (2,-3), temos:
x^2 +a.x – 1 = y
(2)^2 + a.2 – 1 = -3
4 + 2a – 1 = -3
2a + 3 = -3
2a = -3 -3
2a = -6
a = -6/2
a = -3
3-> Determine o conjunto de imagem da função f(x) = 3x² - 5x + 2 de o domínio real: Para descobrir o conjunto imagem, temos: Todos os números que fazem parte do eixo Y e que fazem parte do gráfico. Então vamos calcular o vértice do
Yv = - Delta/4.a
Yv = - Delta/4a
Yv = -( b^2 – 4.a.c )/4.a
Yv = -[ (-5)^2 – 4.3.2) ] / 4.3
Yv = -[ 25 – 24 ] /12
Yv = - 1/12
Conjunto Imagem é formado por todos os números reais maiores ou igual a -1/12.
4-> Determine o valor de K para que a função f(x)= x² - 3x +(k - 2) tenha duas raízes e diferentes
Para que a função tenha duas raízes e diferentes o Delta precisa ser maior que zero.
Então, temos:
Delta = b^2 -4.a.c
b^2 -4.a.c > 0
Substituindo, temos:
(-3)^2 – 4. (1).(k-2)
(-3)^2 – 4. (1).(k-2) >0
9 - 4(k-2) > 0
9 - 4k + 8 > 0
17 – 4k >0
-4k > -17
K > -17/-4
K > 17/4
Agradecemos seu tempo. Por favor, volte a qualquer momento para as informações mais recentes e respostas às suas perguntas. Agradecemos seu tempo. Por favor, volte a qualquer momento para as informações mais recentes e respostas às suas perguntas. Sistersinspirit.ca, seu site de referência para respostas precisas. Não se esqueça de voltar para obter mais conhecimento.