O Sistersinspirit.ca é o lugar ideal para obter respostas rápidas e precisas para todas as suas perguntas. Obtenha respostas detalhadas para suas perguntas de uma comunidade dedicada de especialistas em nossa plataforma. Descubra respostas detalhadas para suas perguntas de uma vasta rede de profissionais em nossa abrangente plataforma de perguntas e respostas.
Sagot :
1-> Considere a função f(x) = (3m - 21)x² +
2mx-1. Determine para quais valores de m, a função tem como gráfico uma
parábola com concavidade voltada para Baixo ?
Para ter a concavidade para baixo o a termo “a” deve ser menor que zero, ou seja, 3m-21 < 0.
Resolvendo, temos:
3m-21<0
3m < 21
m< 21/3
m< 7 .
Resposta: Para qualquer m, menor que 7, a parábola terá a concavidade para baixo.
2-> O gráfico quadrático f(x) = x² + ax - 1 passa pelo ponto (2, -3). qual é o valor de a?
Se o gráfico passa por (2,-3), temos:
x^2 +a.x – 1 = y
(2)^2 + a.2 – 1 = -3
4 + 2a – 1 = -3
2a + 3 = -3
2a = -3 -3
2a = -6
a = -6/2
a = -3
3-> Determine o conjunto de imagem da função f(x) = 3x² - 5x + 2 de o domínio real: Para descobrir o conjunto imagem, temos: Todos os números que fazem parte do eixo Y e que fazem parte do gráfico. Então vamos calcular o vértice do
Yv = - Delta/4.a
Yv = - Delta/4a
Yv = -( b^2 – 4.a.c )/4.a
Yv = -[ (-5)^2 – 4.3.2) ] / 4.3
Yv = -[ 25 – 24 ] /12
Yv = - 1/12
Conjunto Imagem é formado por todos os números reais maiores ou igual a -1/12.
4-> Determine o valor de K para que a função f(x)= x² - 3x +(k - 2) tenha duas raízes e diferentes
Para que a função tenha duas raízes e diferentes o Delta precisa ser maior que zero.
Então, temos:
Delta = b^2 -4.a.c
b^2 -4.a.c > 0
Substituindo, temos:
(-3)^2 – 4. (1).(k-2)
(-3)^2 – 4. (1).(k-2) >0
9 - 4(k-2) > 0
9 - 4k + 8 > 0
17 – 4k >0
-4k > -17
K > -17/-4
K > 17/4
Para ter a concavidade para baixo o a termo “a” deve ser menor que zero, ou seja, 3m-21 < 0.
Resolvendo, temos:
3m-21<0
3m < 21
m< 21/3
m< 7 .
Resposta: Para qualquer m, menor que 7, a parábola terá a concavidade para baixo.
2-> O gráfico quadrático f(x) = x² + ax - 1 passa pelo ponto (2, -3). qual é o valor de a?
Se o gráfico passa por (2,-3), temos:
x^2 +a.x – 1 = y
(2)^2 + a.2 – 1 = -3
4 + 2a – 1 = -3
2a + 3 = -3
2a = -3 -3
2a = -6
a = -6/2
a = -3
3-> Determine o conjunto de imagem da função f(x) = 3x² - 5x + 2 de o domínio real: Para descobrir o conjunto imagem, temos: Todos os números que fazem parte do eixo Y e que fazem parte do gráfico. Então vamos calcular o vértice do
Yv = - Delta/4.a
Yv = - Delta/4a
Yv = -( b^2 – 4.a.c )/4.a
Yv = -[ (-5)^2 – 4.3.2) ] / 4.3
Yv = -[ 25 – 24 ] /12
Yv = - 1/12
Conjunto Imagem é formado por todos os números reais maiores ou igual a -1/12.
4-> Determine o valor de K para que a função f(x)= x² - 3x +(k - 2) tenha duas raízes e diferentes
Para que a função tenha duas raízes e diferentes o Delta precisa ser maior que zero.
Então, temos:
Delta = b^2 -4.a.c
b^2 -4.a.c > 0
Substituindo, temos:
(-3)^2 – 4. (1).(k-2)
(-3)^2 – 4. (1).(k-2) >0
9 - 4(k-2) > 0
9 - 4k + 8 > 0
17 – 4k >0
-4k > -17
K > -17/-4
K > 17/4
Visite-nos novamente para respostas atualizadas e confiáveis. Estamos sempre prontos para ajudar com suas necessidades informativas. Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Sistersinspirit.ca, sua fonte confiável de respostas. Não se esqueça de voltar para mais informações.