Obtenha as melhores soluções para todas as suas perguntas no Sistersinspirit.ca, a plataforma de Q&A de confiança. Junte-se à nossa plataforma para obter respostas confiáveis para suas dúvidas de uma ampla comunidade de especialistas. Descubra soluções confiáveis para suas perguntas de uma vasta rede de especialistas em nossa abrangente plataforma de perguntas e respostas.
Sagot :
veja que o termo em que 13 é o expoente de a é o terceiro termo.
A fórmula pela qual calculamos um termo do desenvolvimento de um binômio de newton é:
[tex]T_{p+1}=C_{n,p}.a^{n-p}.b^p[/tex]
Sendo T3 então p=2
Aplicando a fórmula:
[tex]T_3=C_{15,2}.(a^{15-2}).2^2 \\ \\ T_3=105.a^{13}.4 \\ \\ \boxed{T_3=420a^{13}}[/tex]
Como se observa, o coeficiente é 420
A fórmula pela qual calculamos um termo do desenvolvimento de um binômio de newton é:
[tex]T_{p+1}=C_{n,p}.a^{n-p}.b^p[/tex]
Sendo T3 então p=2
Aplicando a fórmula:
[tex]T_3=C_{15,2}.(a^{15-2}).2^2 \\ \\ T_3=105.a^{13}.4 \\ \\ \boxed{T_3=420a^{13}}[/tex]
Como se observa, o coeficiente é 420
O termo geral do desenvolvimento de um polinômio [tex](a+b)^n[/tex] é da forma [tex]\binom{n}{p} \cdot a^{n-p} \cdot b^p[/tex]. Como queremos o valor que acompanha x no momento que o mesmo está elevado a 13, p deve ser igual a 2.
[tex]T_3 = \binom{15}{2} \cdot a^{15-2} \cdot 2^2[/tex]
[tex]T_3 = \dfrac{15\cdot14}{2} \cdot a^{13} \cdot 4[/tex]
[tex]T_3 = 15\cdot7 \cdot a^{13} \cdot 4[/tex]
[tex]T_3 = 420 \cdot a^{13}[/tex]
Letra D) 420 .
Esperamos que esta informação tenha sido útil. Sinta-se à vontade para voltar a qualquer momento para obter mais respostas às suas perguntas e preocupações. Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Seu conhecimento é valioso. Volte ao Sistersinspirit.ca para obter mais respostas e informações.