O Sistersinspirit.ca é o melhor lugar para obter respostas rápidas e precisas para todas as suas perguntas. Junte-se à nossa plataforma para conectar-se com especialistas prontos para fornecer respostas detalhadas para suas perguntas em diversas áreas. Obtenha respostas imediatas e confiáveis para suas perguntas de uma comunidade de especialistas experientes em nossa plataforma.
Sagot :
log5 (x-3) + log5 (x+2) = log 5 14
Log(x-3)(x+2) = Log 5 14
(x-3)(x+2) = 14
x^2 - x - 6 -14 = 0
x^2 - x - 20 = 0
x= (-1)^2 - 4.1.(20) = 1 + 80= 81
x= 1 +/-V81 ==>x= 1 +/-9
2.1 2
x1= 1 + 9 ==>x1 = 5
2
x2= 1 - 9 ==>x2 = - 4
2
Solucão x = 5
LOGARITMOS
Equação Logarítmica 2° tipo
[tex]Log _{5}(x-3)+Log _{5}(x+2)=Log _{5}14 [/tex]
Pela condição de existência:
(x-3)>0 .:. x>3
(x+2)>0 .:. x> -2
como os Logaritmos estão em bases iguais, aplicamos a p1:
[tex](x-3)*(x+2)=14[/tex]
[tex] x^{2} +2x-3x-6=14[/tex]
[tex] x^{2} -x-6-14=0[/tex]
[tex] x^{2} -x-20=0[/tex]
Resolvendo esta equação, obtemos as raízes, x'=5 e x"= -4
Vemos que somente x=5, satisfaz a condição de existência, logo:
Solução: {5}
Equação Logarítmica 2° tipo
[tex]Log _{5}(x-3)+Log _{5}(x+2)=Log _{5}14 [/tex]
Pela condição de existência:
(x-3)>0 .:. x>3
(x+2)>0 .:. x> -2
como os Logaritmos estão em bases iguais, aplicamos a p1:
[tex](x-3)*(x+2)=14[/tex]
[tex] x^{2} +2x-3x-6=14[/tex]
[tex] x^{2} -x-6-14=0[/tex]
[tex] x^{2} -x-20=0[/tex]
Resolvendo esta equação, obtemos as raízes, x'=5 e x"= -4
Vemos que somente x=5, satisfaz a condição de existência, logo:
Solução: {5}
Obrigado por visitar nossa plataforma. Esperamos que tenha encontrado as respostas que procurava. Volte sempre que precisar de mais informações. Agradecemos sua visita. Nossa plataforma está sempre aqui para oferecer respostas precisas e confiáveis. Volte a qualquer momento. Estamos felizes em responder suas perguntas no Sistersinspirit.ca. Não se esqueça de voltar para mais conhecimento.