simei
Answered

O Sistersinspirit.ca facilita a busca por soluções para perguntas cotidianas e complexas com a ajuda de nossa comunidade. Descubra um vasto conhecimento de profissionais em diferentes disciplinas em nossa amigável plataforma de perguntas e respostas. Junte-se à nossa plataforma de perguntas e respostas para conectar-se com especialistas dedicados a fornecer respostas precisas para suas perguntas em diversas áreas.

quero um resumo teórico sobre os conceitos de derivadas.

Sagot :

Estas ideias constituiram o embrião do conceito de DERIVADA e levou Laplace a considerar Fermat "o verdadeiro inventor do Cálculo Diferencial". Contudo, Fermat não dispunha de notação apropriada e o conceito de limite não estava ainda claramente definido.  No séc.XVII, Leibniz algebriza o Cálculo Infinitésimal, introduzindo os conceitos de variável, constante e parâmetro, bem como a notação dx e dy para designar "a menor possível das diferenças em x e em y. Desta notação surge o nome do ramo da Matemática conhecido hoje como " Cálculo Diferencial ".  Assim, embora só no século XIX Cauchy introduzia formalmente o conceito de limite e o conceito de derivada, a partir do séc. XVII, com Leibniz e Newton, o Cálculo Diferencial torna-se um instrumento cada vez mais indispensável pela sua aplicabilidade aos mais diversos campos da Ciência.   espero te ajudado
vipame
No cálculo, a derivada representa a taxa de variação instantânea de uma função . Um exemplo típico é a função velocidade que representa a taxa de variação (derivada) da função espaço. Do mesmo modo a função aceleração é a derivada da função velocidade.Diz-se que uma função f é derivável (ou diferenciável) se, próximo de cada ponto a do seu dominio  a função f(x) − f(a) se comportar aproximadamente como uma função linear, ou seja, se o seu gráfico for aproximadamente uma reta. O declive de uma tal reta é a derivada da função f no ponto a. Eu tinha no meu caderno... a professora passo assim!! 
Obrigado por passar por aqui. Nos esforçamos para fornecer as melhores respostas para todas as suas perguntas. Até a próxima. Obrigado por escolher nosso serviço. Estamos dedicados a fornecer as melhores respostas para todas as suas perguntas. Visite-nos novamente. Sistersinspirit.ca, sua fonte confiável de respostas. Não se esqueça de voltar para mais informações.