O Sistersinspirit.ca é a melhor solução para quem busca respostas rápidas e precisas para suas perguntas. Nossa plataforma de perguntas e respostas oferece uma experiência contínua para encontrar respostas confiáveis de uma rede de profissionais experientes. Descubra soluções abrangentes para suas perguntas de profissionais experientes em nossa amigável plataforma.


1)Em um triangulo,a medida do maior angulo interno é 105°. Determine as medidas de seus ângulos internos,sabendo que elas estão em P.A (progressão aritmética)

2) Em um treinamento aeróbico mensal um estudante de educação física corre sempre 3 minutos a mais do que correu no dia anterior. Se no quinto dia o estudante correy 17 minutos,quanto tempo correrá no dia 12° (em P.A)

3)Qual é o numero de termos da P.A (131,138,145,...,565)?

4) Quantos numeros impares existem entre 72 e 468?

5) Sabendo que (x+1),(3x-2) e (2x+4) formam,nessa ordem uma P.A,calcular o valor de x e a razão dessa P.A

Muito obrigada gente.

Sagot :

korvo
Questão 1


A soma dos ângulos internos de um triângulo é 180°:

Aplicando a fórmula da soma dos n termos da P.A., onde a1, não sabemos, Sn=180, número de termos n=3, pois queremos descobrir os 3 lados do triângulo e o último termo An=105°.

[tex]Sn= \frac{(a1+An)n}{2} [/tex]

[tex]180= \frac{(a1+105)3}{2} [/tex]

[tex]180*2=3 _{a1} +315[/tex]

[tex]360=3 _{a1}+315 [/tex]

[tex]360-315=3 _{a1} [/tex]

[tex]45=3 _{a1} [/tex]

[tex]a1= \frac{45}{3} [/tex]

a1=15°

Como sabemos que a1 é 15° e a3 é 105°, vamos aplicar a 2a propriedade da P.A.,  a média aritmética:

[tex]a,b,c[/tex] .:. [tex]b= \frac{a+c}{2} [/tex]

[tex]a2= \frac{a1+a3}{2} [/tex]

[tex]a2= \frac{15+105}{2} [/tex]

[tex]a2= \frac{120}{2} [/tex]

a2=60°


Resposta: os ângulos são: 15°, 60° e 105° 



Questão 2 



razão 3 min.
    a5,          a6,          a7,         a8,         a9,         a10,       a11,        a12 
 5° dia............................................................................................12° dia
17 min.                                                                                            ? min.
     |__________________________________________________________|
                                                     8 dias
         
Aplicando a fórmula do termo geral da P.A., temos:

An=a5+(n-1)r
A12=17+(8-1)3
A12=17+7*3
A12=17+21
A12=38

Resposta: Correrá 38 minutos



Questão 3

Coletando os dados da P.A., temos:

a1=131 .:. r=a2-a1 ==> r=138-131 ==> r=7 .:. An=565 .:. número de termos n=?

Aplicando a fórmula do termos geral da P.A.:

An=a1+(n-1)r
365=131+(n-1)7
565-131=7n-7
   434= 7n-7
  434+7=7n
    441 = 7n
       n=441/7
        n=63


Resposta: 63 termos



Questão 4

números ímpares entre 72 e 468:

                  72,73..........................................467,468
                        |                                              |
             1° número ímpar                   último número ímpar
                      a1                                            An

         r=2             e           quantidade de números ímpares n?

Aplicando a fórmula do termo geral da P.A.:

An=a1+(n-1)r
467=73+(n-1)2
 467-73=2n-2
    394 = 2n-2
    394+2=2n
       396=2n
         n=396/2
            n= 198


Resposta: Existem 198 números ímpares



Questão 5


P.A.(x+1, 3x-2, 2x+4)

Aplicando a 2a propriedade da P.A. (média aritmética), temos:

[tex]a,b,c[/tex] .:. [tex]b= \frac{a+c}{2} [/tex]

[tex]3x-2= \frac{2x+4+x+1}{2} [/tex]

[tex](3x-2)*2= 3x+5[/tex]

[tex]6x-4=3x+5[/tex]

[tex]6x-3x=5+4[/tex]

[tex]3x=9[/tex]

[tex]x= \frac{9}{3} [/tex]

[tex]x=3[/tex]

Substituindo o valor de x, vamos determinar a P.A.:

(x+1), (3x-2), (2x+4)
 3+1 ,  3*3-2, 2*3+4
   4   ,   7   ,    10
 
 
Resposta: P.A.(4,7,10) 

Para responder corretamente esse tipo de questão, devemos levar em consideração que:

  • As questões são sobre progressão aritmética;
  • O termo geral da PA é an = a1 + (n-1).r;
  • A soma dos termos da PA é Sn = (a1 + an).n/2;

Com essas informações,  podemos responder as questões:

1) A soma dos ângulos internos de um triângulo é igual a 180°, logo: a + b + 105° = 180°, sendo a, b e 105° uma PA:

180° = (a + 105°).3/2

360°/3 = a + 105°

120° - 105° = a

a = 15°

O valor de b será igual a média entre 15° e 105°:

b = (15 + 105)/2

b = 60°

2) Do enunciado, temos a5 = 17 e r = 3, logo:

a12 = a1 + (12 - 1).3

a12 = a1 + 33

Podemos escrever a1 em função de a5 como: a1 = a5 - 4.r:

a12 = 17 - 4.3 + 33

a12 = 50 - 12

a12 = 38 minutos

3) Sabendo o primeiro e último termo, podemos calcular a razão e encontrar o número de termos:

r = 138 - 131 = 7

565 = 131 + (n - 1).7

n - 1 = 62

n = 63 termos

4) O primeiro número ímpar será 73 e o último será 467 com razão 2, logo:

467 = 73 + (n - 1).2

197 = n - 1

n = 198 números ímpares

5) O segundo termos é a média entre o primeiro e terceiro, logo:

3x - 2 = (x + 1 + 2x + 4)/2

6x - 4 = 3x + 5

3x = 9

x = 3

Os termos da PA são 4, 7 e 10, logo a razão será 3.

Leia mais em:

https://brainly.com.br/tarefa/19882494

View image andre19santos