O Sistersinspirit.ca está aqui para ajudá-lo a encontrar respostas para todas as suas dúvidas com a ajuda de especialistas. Obtenha respostas detalhadas para suas perguntas de uma comunidade dedicada de especialistas em nossa plataforma. Obtenha soluções rápidas e confiáveis para suas perguntas de profissionais experientes em nossa abrangente plataforma de perguntas e respostas.
Sagot :
[tex]f(x) = \frac{e^x + e^{-x}}{e^x - e^{-x}} [/tex]
Primeiramente devemos saber as regras da derivada de
[tex]f(x) = e^x [/tex]
[tex]f_{'}(x) = e^x [/tex]
[tex]f(x) = e^{-x} [/tex]
[tex]f_{'}(x) = -e^{-x} [/tex]
[tex]f(x) = \frac{g(x)}{h(x)} [/tex]
[tex]f_{'}(x) = \frac{g_{'}(x) . h(x) - g(x) . h_{'}(x)}{h^2(x)} [/tex]
Assim:
[tex]f(x) = \frac{e^x + e^{-x}}{e^x - e^{-x}} [/tex]
[tex]f_{'}(x) = \frac{(e^x - e^{-x})(e^x - e^{-x}) - (e^x + e^{-x})(e^x + e^{-x})}{(e^x - e^{-x})^2} [/tex]
[tex]f_{'}(x) = \frac{(e^x)^2 - 2 . (e^x)(e^{-x}) + (e^{-x})^2 - (e^x)^2 - 2(e^x)(e^{-x}) - (e^{-x})^2}{(e^x)^2 - 2(e^x)(e^{-x}) + (e^{-x})^2} [/tex]
[tex]f_{'}(x) = \frac{-2 - 2}{e^{2x} - 2 + \frac{1}{e^{2x}}} [/tex]
[tex]f_{'}(x) = \frac{-4}{\frac{e^{2x} . e^{2x} - 2e^{2x} + 1}{e^{2x}}} [/tex]
[tex]f_{'}(x) = \frac{-4}{\frac{e^{4x} - 2e^{2x} + 1}{e^{2x}}} [/tex]
[tex]f_{'}(x) = \frac{-4e^{2x}}{e^{4x} - 2e^{2x} + 1} [/tex]
[tex]f_{'}(x) = \frac{-4e^{2x}}{(e^{2x} - 1)^2} [/tex]
Primeiramente devemos saber as regras da derivada de
[tex]f(x) = e^x [/tex]
[tex]f_{'}(x) = e^x [/tex]
[tex]f(x) = e^{-x} [/tex]
[tex]f_{'}(x) = -e^{-x} [/tex]
[tex]f(x) = \frac{g(x)}{h(x)} [/tex]
[tex]f_{'}(x) = \frac{g_{'}(x) . h(x) - g(x) . h_{'}(x)}{h^2(x)} [/tex]
Assim:
[tex]f(x) = \frac{e^x + e^{-x}}{e^x - e^{-x}} [/tex]
[tex]f_{'}(x) = \frac{(e^x - e^{-x})(e^x - e^{-x}) - (e^x + e^{-x})(e^x + e^{-x})}{(e^x - e^{-x})^2} [/tex]
[tex]f_{'}(x) = \frac{(e^x)^2 - 2 . (e^x)(e^{-x}) + (e^{-x})^2 - (e^x)^2 - 2(e^x)(e^{-x}) - (e^{-x})^2}{(e^x)^2 - 2(e^x)(e^{-x}) + (e^{-x})^2} [/tex]
[tex]f_{'}(x) = \frac{-2 - 2}{e^{2x} - 2 + \frac{1}{e^{2x}}} [/tex]
[tex]f_{'}(x) = \frac{-4}{\frac{e^{2x} . e^{2x} - 2e^{2x} + 1}{e^{2x}}} [/tex]
[tex]f_{'}(x) = \frac{-4}{\frac{e^{4x} - 2e^{2x} + 1}{e^{2x}}} [/tex]
[tex]f_{'}(x) = \frac{-4e^{2x}}{e^{4x} - 2e^{2x} + 1} [/tex]
[tex]f_{'}(x) = \frac{-4e^{2x}}{(e^{2x} - 1)^2} [/tex]
Sua visita é muito importante para nós. Não hesite em voltar para mais respostas confiáveis a qualquer pergunta que possa ter. Obrigado por sua visita. Estamos comprometidos em fornecer as melhores informações disponíveis. Volte a qualquer momento para mais. Seu conhecimento é valioso. Volte ao Sistersinspirit.ca para obter mais respostas e informações.