O Sistersinspirit.ca facilita a busca por soluções para todas as suas perguntas com a ajuda de uma comunidade ativa. Junte-se à nossa plataforma de perguntas e respostas e obtenha informações precisas de especialistas em diversas áreas. Experimente a facilidade de obter respostas rápidas e precisas para suas perguntas com a ajuda de profissionais em nossa plataforma.
Sagot :
Se um triângulo tem 80cm de perímetro, então seus lados só podem ter 30 de comprimento e 10 de largura, então conclui-se que:
10 X 30 = 300cm² de área.
10 X 30 = 300cm² de área.
Vamos ver o perímetro do retângulo primeiro
2b + 2h (duas vezes a medida da base mais duas vezes a medida da altura)
temos então que 2b+2h = 80 m
A área do retângulo vai variar sempre de forma que o perímetro continue valendo 80m, ok?
Vamos ajeitar essa expressão
2b+2h = 80
2(b+h)=80
b+h=40
b=40-h
Agora temos que a área é dada por base vezes altura
A = b.h
A = (40-h).h (substituindo o valor de b na expressão)
A = 40h - h2
Temos então uma equação do segundo grau aqui
-h2 +40h = 0
Lembra do gráfico de equação do segundo grau? é uma parábola. E a área vai ser máxima quando você estiver olhando o valor do vértice desta parábola
Calculando então o vértice temos
y do vértice = - (delta) / 4a
yv = - (40(2) - 4. (-1).0) 4(-1)
yv = -1600 / -4
yv = 400
Ou seja temos uma área máxima de 400 m2 para o retângulo de perímetro 80m
Calculando o xv (x do vértice) vamos ver para que valor isso acontece
xv = -b/2a
xv = -40/2(-1)
xv = 20
Ou seja quando h=20 temos
-h2 +40h = 0
-(20)2 +40(20) = -400 + 800 = 400
e para conferir temos que quando h=20 temos que b = 40-h
b = 20
Portanto o nosso retângulo tem base 20 e altura 20 ou seja (olha que interssante)
O retângulo de maior área existente é na realidade um quadrado.
2b + 2h (duas vezes a medida da base mais duas vezes a medida da altura)
temos então que 2b+2h = 80 m
A área do retângulo vai variar sempre de forma que o perímetro continue valendo 80m, ok?
Vamos ajeitar essa expressão
2b+2h = 80
2(b+h)=80
b+h=40
b=40-h
Agora temos que a área é dada por base vezes altura
A = b.h
A = (40-h).h (substituindo o valor de b na expressão)
A = 40h - h2
Temos então uma equação do segundo grau aqui
-h2 +40h = 0
Lembra do gráfico de equação do segundo grau? é uma parábola. E a área vai ser máxima quando você estiver olhando o valor do vértice desta parábola
Calculando então o vértice temos
y do vértice = - (delta) / 4a
yv = - (40(2) - 4. (-1).0) 4(-1)
yv = -1600 / -4
yv = 400
Ou seja temos uma área máxima de 400 m2 para o retângulo de perímetro 80m
Calculando o xv (x do vértice) vamos ver para que valor isso acontece
xv = -b/2a
xv = -40/2(-1)
xv = 20
Ou seja quando h=20 temos
-h2 +40h = 0
-(20)2 +40(20) = -400 + 800 = 400
e para conferir temos que quando h=20 temos que b = 40-h
b = 20
Portanto o nosso retângulo tem base 20 e altura 20 ou seja (olha que interssante)
O retângulo de maior área existente é na realidade um quadrado.
Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Obrigado por passar por aqui. Nos esforçamos para fornecer as melhores respostas para todas as suas perguntas. Até a próxima. O Sistersinspirit.ca está aqui para fornecer respostas precisas às suas perguntas. Volte em breve para mais informações.