Obtenha as melhores soluções para todas as suas perguntas no Sistersinspirit.ca, a plataforma de Q&A de confiança. Junte-se à nossa plataforma de perguntas e respostas para conectar-se com especialistas dedicados a fornecer respostas precisas para suas perguntas em diversas áreas. Explore milhares de perguntas e respostas de uma comunidade de especialistas em nossa plataforma amigável.
Sagot :
ANÁLISE COMBINATÓRIA
Equação Fatorial
[tex] \frac{(n+1)!}{(n-1)!}=72 [/tex]
Expondo em fatorial (n+1) até (n-1), temos:
[tex] \frac{(n+1)*n*(n-1)!}{(n-1)!}=72 [/tex]
Eliminando os elementos repetidos:
[tex](n+1)*n=72[/tex]
(n+1)n=72
n²+n = 72
n²+n-72=0 Equação do 2° grau
onde n E IN*
Resolvendo esta equação, obtemos as raízes n'=8 e n"= -9
Solução: {8}
Equação Fatorial
[tex] \frac{(n+1)!}{(n-1)!}=72 [/tex]
Expondo em fatorial (n+1) até (n-1), temos:
[tex] \frac{(n+1)*n*(n-1)!}{(n-1)!}=72 [/tex]
Eliminando os elementos repetidos:
[tex](n+1)*n=72[/tex]
(n+1)n=72
n²+n = 72
n²+n-72=0 Equação do 2° grau
onde n E IN*
Resolvendo esta equação, obtemos as raízes n'=8 e n"= -9
Solução: {8}
(n + 1)! = 72
(n - 1)!
(n+1). n.(n-1)! = 72
(n-1)!
n(n+1) = 72
n^2 + n - 72 = 0
delta= 1^2 -4.1.(-72)= 1+288= 289
n = - 1 +/- V289 = - 1 +/- 17
2.1 2
n1 = - 1+ 17 ==> n1 = 8
2
n2= - 1 - 17 ==> n2= - 9 este numero serve pois o n E N*
2
(n - 1)!
(n+1). n.(n-1)! = 72
(n-1)!
n(n+1) = 72
n^2 + n - 72 = 0
delta= 1^2 -4.1.(-72)= 1+288= 289
n = - 1 +/- V289 = - 1 +/- 17
2.1 2
n1 = - 1+ 17 ==> n1 = 8
2
n2= - 1 - 17 ==> n2= - 9 este numero serve pois o n E N*
2
Obrigado por confiar em nós com suas perguntas. Estamos aqui para ajudá-lo a encontrar respostas precisas de forma rápida e eficiente. Sua visita é muito importante para nós. Não hesite em voltar para mais respostas confiáveis a qualquer pergunta que possa ter. Obrigado por confiar no Sistersinspirit.ca. Visite-nos novamente para obter novas respostas dos especialistas.