O Sistersinspirit.ca é a melhor solução para quem busca respostas rápidas e precisas para suas perguntas. Nossa plataforma de perguntas e respostas conecta você com especialistas prontos para fornecer informações precisas em diversas áreas do conhecimento. Nossa plataforma oferece uma experiência contínua para encontrar respostas confiáveis de uma rede de profissionais experientes.
Sagot :
LOGARITMOS
Equações Logarítmicas 3° Tipo
[tex]Log _{3}(x+1)-Log _{9}(x+1)=1 [/tex]
Primeiramente vamos impor a condição de existência para o logaritmando, para que x satisfaça a equação:
(x+1)>0
x>-1
Vemos que os termos da equação estão em bases diferentes, vamos passar para a menor base, base 3:
[tex]Log _{3}(x+1)- \frac{Log _{3}(x+1) }{Log _{3}9 }=1 [/tex]
usando a definição, temos:
[tex]Log _{3}(x+1)- \frac{Log _{3}(x+1) }{2}=1 [/tex]
[tex]2Log _{3}(x+1)-Log _{3}(x+1)=2 [/tex]
[tex]Log _{3}(x+1)-Log _{3}(x+1)= \frac{2}{2} [/tex]
[tex]Log _{3}(x+1)-Log _{3}(x+1)=1 [/tex]
[tex]Log _{3} \frac{(x+1)}{(x+1)}=1 [/tex]
aplicando a definição, vem:
[tex] \frac{(x+1)}{(x+1)}=3 ^{1} [/tex]
[tex] \frac{(x+1)}{(x+1)}=3 [/tex]
[tex](x+1)=3(x+1)[/tex]
[tex](x+1)=3x+3[/tex]
[tex]x-3x=3-1[/tex]
[tex]-2x=2[/tex]
[tex]x= \frac{2}{-2} [/tex]
[tex]x=-1[/tex]
Este valor não satisfaz a condição de existência, portanto:
/
Solução: {O}
/
Equações Logarítmicas 3° Tipo
[tex]Log _{3}(x+1)-Log _{9}(x+1)=1 [/tex]
Primeiramente vamos impor a condição de existência para o logaritmando, para que x satisfaça a equação:
(x+1)>0
x>-1
Vemos que os termos da equação estão em bases diferentes, vamos passar para a menor base, base 3:
[tex]Log _{3}(x+1)- \frac{Log _{3}(x+1) }{Log _{3}9 }=1 [/tex]
usando a definição, temos:
[tex]Log _{3}(x+1)- \frac{Log _{3}(x+1) }{2}=1 [/tex]
[tex]2Log _{3}(x+1)-Log _{3}(x+1)=2 [/tex]
[tex]Log _{3}(x+1)-Log _{3}(x+1)= \frac{2}{2} [/tex]
[tex]Log _{3}(x+1)-Log _{3}(x+1)=1 [/tex]
[tex]Log _{3} \frac{(x+1)}{(x+1)}=1 [/tex]
aplicando a definição, vem:
[tex] \frac{(x+1)}{(x+1)}=3 ^{1} [/tex]
[tex] \frac{(x+1)}{(x+1)}=3 [/tex]
[tex](x+1)=3(x+1)[/tex]
[tex](x+1)=3x+3[/tex]
[tex]x-3x=3-1[/tex]
[tex]-2x=2[/tex]
[tex]x= \frac{2}{-2} [/tex]
[tex]x=-1[/tex]
Este valor não satisfaz a condição de existência, portanto:
/
Solução: {O}
/
Agradecemos seu tempo em nosso site. Não hesite em retornar sempre que tiver mais perguntas ou precisar de esclarecimentos adicionais. Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Estamos felizes em responder suas perguntas no Sistersinspirit.ca. Não se esqueça de voltar para mais conhecimento.