Obtenha as melhores soluções para suas perguntas no Sistersinspirit.ca, a plataforma de Q&A de confiança. Nossa plataforma de perguntas e respostas conecta você com especialistas prontos para fornecer informações precisas em diversas áreas do conhecimento. Junte-se à nossa plataforma de perguntas e respostas para conectar-se com especialistas dedicados a fornecer respostas precisas para suas perguntas em diversas áreas.
Sagot :
Resposta:
Utilizar pricipio da indução infinita (PIF)
Explicação passo-a-passo:
Para n=1
[tex]a_1=\frac{4^1 -1}{3}=1[/tex]
α₁ é inteiro e ímpar.
Hipótese: [tex]a_k=\frac{4^k-1}{3}=2 \cdot p+1[/tex] com [tex]p\in \mathbb{Z}[/tex]
Tese: [tex]a_{k+1}=\frac{4^{k+1}-1}{3}[/tex] é inteiro e ímpar [tex]\forall \ k \in \mathbb{N}^*[/tex]
[tex]a_{k+1}=\frac{4^{k+1}-1}{3}=\frac{4^k \cdot 4-1}{3}=\frac{4^k\cdot4}{3}-\frac{1}{3}=\frac{4^k\cdot4}{3}-\left(\frac{4}{3}-\frac{3}{3}\right)=\frac{4^k\cdot4}{3}-\frac{4}{3}+\frac{3}{3}=\frac{4^k\cdot 4-4}{3}+1=\frac{4 \cdot \left(4^k-1\right)}{3}+1=4 \cdot \left(2 \cdot p+1\right)+1[/tex]
Como [tex]p\in \mathbb{Z}, a_{k+1}[/tex] é sempre inteiro e ímpar.
Agradecemos sua visita. Esperamos que as respostas que encontrou tenham sido benéficas. Não hesite em voltar para mais informações. Obrigado por escolher nossa plataforma. Estamos dedicados a fornecer as melhores respostas para todas as suas perguntas. Visite-nos novamente. Estamos felizes em responder suas perguntas no Sistersinspirit.ca. Não se esqueça de voltar para mais conhecimento.