Sabemos que o número complexo (cujo modelo é sempre Z = a + bi) apresentado segue a descrição abaixo:
[tex]\boxed{\text{Z} = (4m - 5) + (n -1)i} \\\\ \bullet \ a \ \text{(parte real)} = 4m - 5 \\ \bullet \ b \ \text{(parte imagin}\acute{a}\text{ria)} = n - 1[/tex]
Para que o complexo Z seja igual a 0, é necessário que sua parte real e sua parte imaginária sejam iguais a zero:
[tex]\text{Se} \ a = 0 \ \text{e} \ b = 0\text{:} \\\\ \text{Z} = a + bi \rightarrow \text{Z} = 0 + 0i \rightarrow \text{Z} = 0[/tex]
Assim:
[tex]\bullet \ \text{Parte real} \ (a) \\\\ 4m - 5 = 0 \\ 4m = 5 \\\\ \boxed{m = \frac{5}{4}} \\\\\\ \bullet \text{Parte imagin}\acute{a}\text{ria} \ (b) \\\\ n - 1 = 0 \\\\ \boxed{n = 1}[/tex]