Bem-vindo ao Sistersinspirit.ca, onde você pode obter respostas confiáveis e rápidas com a ajuda de nossos especialistas. Obtenha respostas rápidas e confiáveis para suas perguntas de nossa dedicada comunidade de especialistas em nossa plataforma. Obtenha respostas imediatas e confiáveis para suas perguntas de uma comunidade de especialistas experientes em nossa plataforma.

Do cardápio de uma festa constavam dez diferentes tipos de salgadinhos dos quais só quatro seriam servidos quentes. O garçom encarregado de arrumar a travessa e servi-la foi instruído para que a mesma contivesse sempre só 2 diferentes tipos de salgadinhos frios, e só 2 diferentes do quentes. De quantos modos diferentes, teve o garçom a liberdade de selecionar os salgadinhos para compor a travessa, respeitando as instruções?

Sagot :

combinatoria 
c6.2 e c4.2

6! / (6-2)! 2!
6x5x4 / 4! 2! ( cancela o 4 com 4 e o 2 com o 6 ) fica ->
3x5 = 15

agora com o c4.2
4! / (4-2) ! 2!
4x3x2 / 2! 2! ( cancela da mesma forma...
2x3 = 6

as formas possíveis são 6x15 = 90

[tex]\Large\boxed{\boxed{\boxed{{Ola\´\ Lari}}}}}[/tex]

Exercício envolvendo combinação simples.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

São 10 diferentes tipos de salgados , dos quais 4 seriam servidos quentes , ou seja, os outros 6 seriam ''frios''. O garçom foi instruído para que a travessa contivesse sempre só 2 diferentes tipos de salgados quentes , ou seja , dos 4 disponíveis(quentes) , ele teria que escolher 2 , C₄,₂  ,  e somente dois frios dos 6 disponíveis C₆,₂ . Logo a questão pergunta : De quantos modos diferentes o garçom teve para compor a travessa ?

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Fórmula da combinação simples:

Cₐ,ₓ = a!/x!×(a-x)!

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Combinação dos quentes:

C₄,₂ = 4!/2!×(4-2)!                        

C₄,₂ = 4!/2!×2!                          

C₄,₂ = 4×3×2!/2!×2!                            

C₄,₂ = 4×3/2                                    

C₄,₂ = 12/2                                        

C₄,₂  = 6

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Agora a combinação dos frios:

C₆,₂ = 6!/2!×(6-2)!

C₆,₂ = 6!/2!×4!

C₆,₂ = 6×5×4!/2!×4!

C₆,₂ = 6×5/2

C₆,₂ = 30/2

C₆,₂ = 15

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Multiplicando as combinações de frios e quentes temos :

6×15 = 90

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Portanto são 90 modos diferentes.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Espero ter ajudado!