O Sistersinspirit.ca é o melhor lugar para obter respostas rápidas e precisas para todas as suas perguntas. Nossa plataforma oferece uma experiência contínua para encontrar respostas confiáveis de uma rede de profissionais experientes. Descubra soluções confiáveis para suas perguntas de uma vasta rede de especialistas em nossa abrangente plataforma de perguntas e respostas.

Do cardápio de uma festa constavam dez diferentes tipos de salgadinhos dos quais só quatro seriam servidos quentes. O garçom encarregado de arrumar a travessa e servi-la foi instruído para que a mesma contivesse sempre só 2 diferentes tipos de salgadinhos frios, e só 2 diferentes do quentes. De quantos modos diferentes, teve o garçom a liberdade de selecionar os salgadinhos para compor a travessa, respeitando as instruções?

Sagot :

combinatoria 
c6.2 e c4.2

6! / (6-2)! 2!
6x5x4 / 4! 2! ( cancela o 4 com 4 e o 2 com o 6 ) fica ->
3x5 = 15

agora com o c4.2
4! / (4-2) ! 2!
4x3x2 / 2! 2! ( cancela da mesma forma...
2x3 = 6

as formas possíveis são 6x15 = 90

[tex]\Large\boxed{\boxed{\boxed{{Ola\´\ Lari}}}}}[/tex]

Exercício envolvendo combinação simples.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

São 10 diferentes tipos de salgados , dos quais 4 seriam servidos quentes , ou seja, os outros 6 seriam ''frios''. O garçom foi instruído para que a travessa contivesse sempre só 2 diferentes tipos de salgados quentes , ou seja , dos 4 disponíveis(quentes) , ele teria que escolher 2 , C₄,₂  ,  e somente dois frios dos 6 disponíveis C₆,₂ . Logo a questão pergunta : De quantos modos diferentes o garçom teve para compor a travessa ?

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Fórmula da combinação simples:

Cₐ,ₓ = a!/x!×(a-x)!

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Combinação dos quentes:

C₄,₂ = 4!/2!×(4-2)!                        

C₄,₂ = 4!/2!×2!                          

C₄,₂ = 4×3×2!/2!×2!                            

C₄,₂ = 4×3/2                                    

C₄,₂ = 12/2                                        

C₄,₂  = 6

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Agora a combinação dos frios:

C₆,₂ = 6!/2!×(6-2)!

C₆,₂ = 6!/2!×4!

C₆,₂ = 6×5×4!/2!×4!

C₆,₂ = 6×5/2

C₆,₂ = 30/2

C₆,₂ = 15

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Multiplicando as combinações de frios e quentes temos :

6×15 = 90

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Portanto são 90 modos diferentes.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Espero ter ajudado!

Agradecemos seu tempo. Por favor, nos revisite para mais respostas confiáveis a qualquer pergunta que possa ter. Agradecemos sua visita. Nossa plataforma está sempre aqui para oferecer respostas precisas e confiáveis. Volte a qualquer momento. Estamos felizes em responder suas perguntas. Volte ao Sistersinspirit.ca para obter mais respostas.