O Sistersinspirit.ca facilita a busca por respostas para suas perguntas com a ajuda de uma comunidade ativa. Descubra respostas abrangentes para suas perguntas de profissionais experientes em nossa plataforma amigável. Explore um vasto conhecimento de profissionais em diferentes disciplinas em nossa abrangente plataforma de perguntas e respostas.

Pessoal por favor me ajudem por favor,resolver o sistema linear :

A) x+y-4z=1
    2x+y-2z=8
    3x-2y+z=6
 me ajudem, respondam certinho passo a passo, por favor


Sagot :

korvo
SISTEMA DE EQUAÇÕES LINEARES

Resolver o sistema linear | x+y-4z= 1
                                     |2x+y-2z= 
                                     |3x-2y+z= 6

Para resolução deste sistema, é necessário o conhecimento em matriz de ordem 3x3, e a aplicação da regra de Sarrus:

Vamos montar as matrizes lineares à partir do sistema acima. Quando for montar a matriz delta use as variáveis à esquerda do sinal de igualdade, veja:

                                   12  -  4    -2 = 6
               \      \       \    /      /      /
               | 1     1     -4  |    1     1        
               | 2     1     -2  |    2     1   ==> delta=11+6 ==> delta=17
               | 3    -2      1  |    3    -2
               /      /       /    \      \     \
                                     1   -6  +16 = 11
Para montarmos o determinante delta x, devemos esconder as variáveis x que se encontram do lado esquerdo da igualdade e no lugar delas, usar os coeficientes após a igualdade, assim:

                    (x)           24 -  4  - 8 = 12
                   | 1    1   -4 |   1    1
                   | 8    1   -2 |   8    1  ==> delta x=53+12 ==> delta x= 65
                   | 6   -1    1 |   6   -1
                                  1 - 12 + 64 = 53
Para montarmos o determinante delta y, devemos esconder y e usar as variáveis depois do sinal de igualdade, assim:

                         (y)       96 + 12 - 2 = 106
                  | 1    1    -4 |   1    1
                  | 2    8    -2 |   2    8      ==> delta y= 106-46 ==> delta y=60
                  | 3    6     1 |   3    6
                                  8  -  6 - 48 = -46
Para descobrirmos o determinante delta z, temos que esconder z, e usar os valores após a igualdade, veja:

                                  (z)   -3 + 16 -12 = 1
                    | 1    1     1 |   1    1
                    | 2    1     8 |   2    1   ==> delta z= 1+26 ==> delta z=27
                    | 3   -2     6 |   3   -2
                                    6 + 24 - 4 = 26
Apenas descobrimos delta, delta x, delta y e delta z, agora vamos determinar o valor
de x,y e z do sistema linear acima e é dado pela regra de Cramer, veja:

[tex]x= \frac{delta\left X}{delta}= \frac{65}{17} [/tex]
                               
[tex]y= \frac{delta\left Y}{delta}= \frac{60}{17} [/tex]

[tex]z= \frac{delta\left Z}{delta}= \frac{27}{17} [/tex]



Solução: x,y,z ([tex] \frac{65}{17} [/tex],  [tex] \frac{60}{17} [/tex],  [tex] \frac{27}{17} [/tex])