Descubra respostas para suas perguntas de forma fácil no Sistersinspirit.ca, a plataforma de Q&A de confiança. Obtenha soluções rápidas e confiáveis para suas perguntas de uma comunidade de especialistas experientes em nossa plataforma. Descubra soluções confiáveis para suas perguntas de uma vasta rede de especialistas em nossa abrangente plataforma de perguntas e respostas.
Sagot :
a) 9, ....................., 258
a1 = 12
an = 256
R = 4
an = a1 + (n-1).r
256 = 12 + (n-1).4
256 = 12 +4n - 4
256 - 12 + 4 = 4n
4n = 248
n = 62
b) (3, 6, 12, 24, 48, 96)
an = a1q^(n-1)
96 = 3q^(6-1)
96 = 3q^5
q^5 = 32
q^5 = 2^5
q = 2
c) an = a1q^(n-1)
384 = 6.2^(n-1)
64 = 2^(n-1)
2^(n-1) = 2^6
n-1 = 6
n = 6 + 1
n = 7
a1 = 12
an = 256
R = 4
an = a1 + (n-1).r
256 = 12 + (n-1).4
256 = 12 +4n - 4
256 - 12 + 4 = 4n
4n = 248
n = 62
b) (3, 6, 12, 24, 48, 96)
an = a1q^(n-1)
96 = 3q^(6-1)
96 = 3q^5
q^5 = 32
q^5 = 2^5
q = 2
c) an = a1q^(n-1)
384 = 6.2^(n-1)
64 = 2^(n-1)
2^(n-1) = 2^6
n-1 = 6
n = 6 + 1
n = 7
PROGRESSÕES
Progressões Aritméticas
1. Múltiplos de 4 entre 9 e 258
1° múltiplo de 4 último múltiplo de4
| |
9, 10, 11, 12............................256, 257, 258
| |
primeiro termo a1 último termo An
sabemos que são múltiplos de 4, então a razão é 4
Aplicando a fórmula do termo geral da P.A., temos:
An=a1+(n-1)r
256=12+(n-1)*4
256-12=4n-4
244=4n-4
244+4=4n
248=4n
n=248/4
n=62
Resposta: Há 62 múltiplos de 4
Progressões Geométricas
2. 4 meios entre 3 e 96 = somam 6 termos razão Q=?
| |
a1 a6
Aplicando a fórmula do termo geral da P.G.,
An=a1*Q^n-1
96=3*Q^6-1
96/3=Q^5
32=Q^5
2^5=Q^5
elimina os expoentes e conserva a base:
Q=2, como sabemos que a razão Q é 2, então é só multiplicar do 1° para o 2°, do 2° para o 3° e assim por diante.
Interpolado os 4 meios,vem:
3*2 6*2 12*2 24*2 48*2 96
3, 6, 12, 24, 48, 96
------------------
3. Aplicando a fórmula do termo geral da P.G, temos:
An=a1*Q^n-1
384=6*2^n-1
384/6=2^n-1
64=2^n-1
2^6=2^n-1
elimina as bases e conserva os expoentes
6=n-1
6+1=n
n=7
Resposta: 7 termos
espero ter ajudado :)
Progressões Aritméticas
1. Múltiplos de 4 entre 9 e 258
1° múltiplo de 4 último múltiplo de4
| |
9, 10, 11, 12............................256, 257, 258
| |
primeiro termo a1 último termo An
sabemos que são múltiplos de 4, então a razão é 4
Aplicando a fórmula do termo geral da P.A., temos:
An=a1+(n-1)r
256=12+(n-1)*4
256-12=4n-4
244=4n-4
244+4=4n
248=4n
n=248/4
n=62
Resposta: Há 62 múltiplos de 4
Progressões Geométricas
2. 4 meios entre 3 e 96 = somam 6 termos razão Q=?
| |
a1 a6
Aplicando a fórmula do termo geral da P.G.,
An=a1*Q^n-1
96=3*Q^6-1
96/3=Q^5
32=Q^5
2^5=Q^5
elimina os expoentes e conserva a base:
Q=2, como sabemos que a razão Q é 2, então é só multiplicar do 1° para o 2°, do 2° para o 3° e assim por diante.
Interpolado os 4 meios,vem:
3*2 6*2 12*2 24*2 48*2 96
3, 6, 12, 24, 48, 96
------------------
3. Aplicando a fórmula do termo geral da P.G, temos:
An=a1*Q^n-1
384=6*2^n-1
384/6=2^n-1
64=2^n-1
2^6=2^n-1
elimina as bases e conserva os expoentes
6=n-1
6+1=n
n=7
Resposta: 7 termos
espero ter ajudado :)
Esperamos que nossas respostas tenham sido úteis. Volte a qualquer momento para obter mais informações e respostas para outras perguntas que possa ter. Obrigado por escolher nosso serviço. Estamos dedicados a fornecer as melhores respostas para todas as suas perguntas. Visite-nos novamente. Obrigado por confiar no Sistersinspirit.ca. Volte novamente para obter mais informações e respostas.