O Sistersinspirit.ca é o melhor lugar para obter respostas confiáveis e rápidas para todas as suas perguntas. Obtenha respostas detalhadas e precisas para suas perguntas de uma comunidade dedicada de especialistas em nossa plataforma de perguntas e respostas. Obtenha respostas detalhadas e precisas para suas perguntas de uma comunidade dedicada de especialistas em nossa plataforma de perguntas e respostas.
Sagot :
Olá, Dhone.
a) FALSA. A relação "<" NÃO é reflexiva. Se a relação "<" fosse reflexiva, deveríamos ter [tex]x < x[/tex] , o que é um absurdo, pois [tex]x = x[/tex].
b) FALSA. Seja [tex]A=\{1,2,3\}[/tex] e seja a seguinte relação [tex]R \subset A\times A[/tex] tal que [tex]R=\{(1,1),(2,2),(3,3)\}[/tex]. Para [tex]\forall (x,x) \in A \Rightarrow (x,x) \in R \Rightarrow xRx \Rightarrow R[/tex] é reflexiva. Entretanto, se tomarmos qualquer dois pares [tex](x,y)\ e\ (y,z) \in A[/tex] tais que [tex]x \neq y \ e\ y \neq z,[/tex] temos que [tex](x,y) \notin R\ e\ (y,z) \notin R \Rightarrow[/tex] não há transitividade nesta relação [tex]R[/tex] , embora ela seja reflexiva.
c) VERDADEIRA. duas relações [tex]R[/tex] e [tex]R'[/tex] são recíprocas se [tex]xRy \Rightarrow yR'x[/tex]. As relações [tex]"\leq"[/tex] e [tex]"\geq"[/tex] são, portanto, recíprocas, pois, se [tex]x \leq y \Rightarrow y \geq x[/tex] .
d) VERDADEIRA. O enunciado aqui é a própria definição de relação antissimétrica.
Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Obrigado por escolher nossa plataforma. Estamos dedicados a fornecer as melhores respostas para todas as suas perguntas. Visite-nos novamente. Sempre visite o Sistersinspirit.ca para obter novas e confiáveis respostas dos nossos especialistas.