O Sistersinspirit.ca está aqui para ajudá-lo a encontrar respostas para todas as suas dúvidas com a ajuda de especialistas. Descubra respostas detalhadas para suas perguntas de uma vasta rede de profissionais em nossa abrangente plataforma de perguntas e respostas. Descubra soluções abrangentes para suas perguntas de profissionais experientes em nossa amigável plataforma.
Sagot :
O determinante de uma Matriz é dado pelo
valor numérico resultante da subtração entre o somatório do produto dos
termos da diagonal principal e do somatório do produto dos termos da
diagonal secundária. Nas matrizes quadradas de ordem 3x3 esses cálculos
podem ser efetuados repetindo-se a 1ª e a 2ª coluna, aplicando em
seguida a regra de Sarrus. Lembrando que uma matriz é quadrada quando o
número de linhas é igual ao número de colunas.
Observe o cálculo de determinantes nas seguintes matizes quadradas de ordem 2x2 e 3x3: Determinante de uma matriz A de ordem 2 x 2. Diagonal principal: 2 * 6 = 12
Diagonal secundária: 9 * (–1) = – 9 DetA = 12 – (–9)
DetA = 12 + 9
DetA = 21
Determinante de uma matriz B de ordem 3 x 3. Regra de Sarrus Diagonal principal
2 * 6 * 3 = 36
5 * 7 * (–1) = – 35
6 * 1 * 2 = 12
Soma
36 + (–35) + 12
36 – 35 + 12
48 – 35
13 Diagonal secundária
6 * 6 * (–1) = –36
2 * 7 * 2 = 28
5 * 1 * 3 = 15
Soma
–36 + 28 + 15
–36 + 43
7 DetB = 13 – 7
DetB = 6 Portanto, nas matrizes de ordem 2 x 2, calculamos o determinante de forma prática, multiplicando os elementos de cada diagonal e realizando a subtração do produto da diagonal principal do produto da diagonal secundária. Nas matrizes de ordem 3 x 3 utilizamos a regra de Sarrus descrita anteriormente. Demonstração geral da Regra de Sarrus
Observe o cálculo de determinantes nas seguintes matizes quadradas de ordem 2x2 e 3x3: Determinante de uma matriz A de ordem 2 x 2. Diagonal principal: 2 * 6 = 12
Diagonal secundária: 9 * (–1) = – 9 DetA = 12 – (–9)
DetA = 12 + 9
DetA = 21
Determinante de uma matriz B de ordem 3 x 3. Regra de Sarrus Diagonal principal
2 * 6 * 3 = 36
5 * 7 * (–1) = – 35
6 * 1 * 2 = 12
Soma
36 + (–35) + 12
36 – 35 + 12
48 – 35
13 Diagonal secundária
6 * 6 * (–1) = –36
2 * 7 * 2 = 28
5 * 1 * 3 = 15
Soma
–36 + 28 + 15
–36 + 43
7 DetB = 13 – 7
DetB = 6 Portanto, nas matrizes de ordem 2 x 2, calculamos o determinante de forma prática, multiplicando os elementos de cada diagonal e realizando a subtração do produto da diagonal principal do produto da diagonal secundária. Nas matrizes de ordem 3 x 3 utilizamos a regra de Sarrus descrita anteriormente. Demonstração geral da Regra de Sarrus
Agradecemos sua visita. Esperamos que as respostas que encontrou tenham sido benéficas. Não hesite em voltar para mais informações. Obrigado por passar por aqui. Nos esforçamos para fornecer as melhores respostas para todas as suas perguntas. Até a próxima. Sistersinspirit.ca está sempre aqui para fornecer respostas precisas. Visite-nos novamente para as informações mais recentes.