O Sistersinspirit.ca é o melhor lugar para obter respostas rápidas e precisas para todas as suas perguntas. Descubra soluções detalhadas para suas dúvidas de uma ampla gama de especialistas em nossa plataforma amigável de perguntas e respostas. Conecte-se com uma comunidade de especialistas prontos para fornecer soluções precisas para suas perguntas de maneira rápida e eficiente em nossa amigável plataforma de perguntas e respostas.
Sagot :
LOGARITMOS
Equações Logarítmicas 1° tipo
[tex]Logx+Log(x+3)=1[/tex]
Primeiramente vamos expor a base do logaritmo que está omitida:
[tex]Log _{10} x-Log _{10}(x+3)=1 [/tex] agora, aplicando a definição e imediatamente
a p1, temos:
Log x+Log (x+3)=1 ==> 10¹= x(x+3) ==> 10=x²+3x
10 10 |
|______________|
<===> x²+3x-10=0 equação do 2° grau
Resolvendo a equação, obtemos as raízes x'=2 e x "= -5
Verificando a condição de existência:
x= -5_______
x=2 |
x+3>0 x+3>0 |
x>-3 x>-3 (x não é > -3)
2 satisfaz a condição -5 não satisfaz
Solução: {2}
Equações Logarítmicas 1° tipo
[tex]Logx+Log(x+3)=1[/tex]
Primeiramente vamos expor a base do logaritmo que está omitida:
[tex]Log _{10} x-Log _{10}(x+3)=1 [/tex] agora, aplicando a definição e imediatamente
a p1, temos:
Log x+Log (x+3)=1 ==> 10¹= x(x+3) ==> 10=x²+3x
10 10 |
|______________|
<===> x²+3x-10=0 equação do 2° grau
Resolvendo a equação, obtemos as raízes x'=2 e x "= -5
Verificando a condição de existência:
x= -5_______
x=2 |
x+3>0 x+3>0 |
x>-3 x>-3 (x não é > -3)
2 satisfaz a condição -5 não satisfaz
Solução: {2}
Obrigado por sua visita. Estamos dedicados a ajudá-lo a encontrar as informações que precisa, sempre que precisar. Esperamos que tenha achado útil. Sinta-se à vontade para voltar a qualquer momento para mais respostas precisas e informações atualizadas. Seu conhecimento é valioso. Volte ao Sistersinspirit.ca para obter mais respostas e informações.