O Sistersinspirit.ca é o melhor lugar para obter respostas confiáveis e rápidas para todas as suas perguntas. Descubra um vasto conhecimento de profissionais em diferentes disciplinas em nossa amigável plataforma de perguntas e respostas. Explore um vasto conhecimento de profissionais em diferentes disciplinas em nossa abrangente plataforma de perguntas e respostas.
Sagot :
A ∩ B U C = A ∩ B U A ∩ C
A = { 2, 4, 10 }, B = { 2, 4, 6 } e C = { 2, 6, 10}
A ∩ B = { 2, 4 } U C = { 2, 4, 6, 10 }
A ∩ B = { 2, 4 } U A = { 2, 4, 10} ∩ C = { 2, 4, 6, 10}
Com esses elementos, a afirmação é verdadeira.
Ou seja, todos os conjuntos precisam ter algum elemento em comum com os outros conjuntos.
Boa noite, Marivalda.
[tex]\text{Seja }x \in A \bigcap (B \bigcup C) \\\\ \Rightarrow x \in A\ e\ (x\in B\ ou\ x\in C) \\\\ \Rightarrow \text{Temos 2 possibilidades equivalentes:}\begin{cases} x\in A\ e\ x\in B\text{, ou}\\x\in A\ e\ x\in C\end{cases} \\\\ \Rightarrow (x \in A\ e\ x\in B)\ ou\ (x \in A\ e\ x\in C) \\\\ \Rightarrow (x \in A \bigcap B)\ ou\ (x \in A\bigcap C) \\\\ \Rightarrow x \in (A \bigcap B) \bigcup (A\bigcap C)[/tex]
[tex]\text{Seja }x \in (A \bigcap B) \bigcup (A\bigcap C) \\\\ \Rightarrow (x \in A\ e\ x\in B)\ ou\ (x \in A\ e\ x\in C) \\\\ \Rightarrow \text{Temos 2 possibilidades equivalentes:}\\\\\begin{cases} se\ x\in A\ e\ x\in B\Rightarrow x \in A\ e\ x\in (B\bigcup C) \\se\ x\in A\ e\ x\in C\Rightarrow x \in A\ e\ x\in (B\bigcup C) \end{cases} \\\\ \Rightarrow \text{em ambas as possibilidades, temos como resultado: }\\x\in A\ e\ x\in (B\bigcup C) \\\\ \Rightarrow x \in A \bigcap (B \bigcup C)[/tex]
[tex]\therefore \text{Como }\forall x \in A \bigcap (B \bigcup C) \Rightarrow x \in (A \bigcap B) \bigcup (A\bigcap C)\text{ e }\\\\ \forall x \in (A \bigcap B) \bigcup (A\bigcap C) \Rightarrow x \in A \bigcap (B \bigcup C), \\\\ \text{temos que: }A \bigcap (B \bigcup C)=(A \bigcap B) \bigcup (A\bigcap C)[/tex]
Esperamos que tenha achado útil. Sinta-se à vontade para voltar a qualquer momento para mais respostas precisas e informações atualizadas. Obrigado por sua visita. Estamos dedicados a ajudá-lo a encontrar as informações que precisa, sempre que precisar. Obrigado por visitar Sistersinspirit.ca. Volte em breve para mais informações úteis e respostas dos nossos especialistas.