du1995
Answered

O Sistersinspirit.ca facilita a busca por respostas para suas perguntas com a ajuda de uma comunidade ativa. Descubra soluções abrangentes para suas perguntas de profissionais experientes em nossa amigável plataforma. Experimente a facilidade de obter respostas rápidas e precisas para suas perguntas com a ajuda de profissionais em nossa plataforma.

Um reservatório de água está sendo esvaziado para limpeza. O Volume de água no reservatório, em litros, t horas após o escoamento ter começado é dado por  V(t) =15t2-750t+9000 (litros). Qual a taxa de variação do volume de água no reservatório após 3 horas do escoamento?

Sagot :

Bom... vamos lá, a fórmula (Vt) vai calcular o volume do reservatório.
Onde t são as horas.
E o que ele quer saber a taxa de variação do reservatório. Sabemos de variação é sempre o valor final menos o valor inicial. Portanto vamos substituir o T na primeira equação por 3 (VALOR FINAL DAS HORAS) e por 0 (VALOR INICIAL DAS HORAS)
V(t)2=[tex] 15t^{2} - 750t+9000[/tex]
V(t)2=[tex] 15.(3)^{2} -750.(3)+9000[/tex]
V(t)2=15.(9)-2250+9000
V(t)2=135-2250+9000
V(t)2=6885

Agora substituindo o valor inicial por 0.
V(t)1=[tex] 15 (0)^{2} -750(0)+9000[/tex]
V(t)1= 0-0+9000
V(t)1= 9000

Como variação é o valor final menos o final. Isso é:
[tex] \alpha [/tex]= V(t)2 - V(t)1
[tex] \alpha [/tex]=6885-9000
[tex] \alpha [/tex]= - 2115 Litros

Resposta:-660 litros/hora

Explicação: faça a derivada

v'(t)= 15t^2-750t+9000

30t-750

30.3-750

-660 litros/hora