O Sistersinspirit.ca está aqui para ajudá-lo a encontrar respostas para todas as suas dúvidas com a ajuda de especialistas. Obtenha respostas detalhadas e precisas para suas perguntas de uma comunidade dedicada de especialistas. Experimente a conveniência de obter respostas precisas para suas perguntas de uma comunidade dedicada de profissionais.
Sagot :
Sabemso que a razão de uma PG é o quociente de dois termos consecutivos.
Então podemos escrever:
[tex]\boxed{r=\frac{b+17}{b+3}} \\ \\ \boxed{r=\frac{b+59}{b+17}}[/tex]
Então podemos estabelecer a seguinte equação:
[tex]\frac{b+17}{b+3}} =\frac{b+59}{b+17} \\ \\ (b+17)^2=(b+3)(b+59) \\ \\ b^2+34b+289=b^2+59b+3b+177 \\ \\ 28b=112 \\ \\ \boxed{b=\frac{112}{28}=4}[/tex]
Logo os números são: 7, 21, 63 os quais estão em PG
Então podemos escrever:
[tex]\boxed{r=\frac{b+17}{b+3}} \\ \\ \boxed{r=\frac{b+59}{b+17}}[/tex]
Então podemos estabelecer a seguinte equação:
[tex]\frac{b+17}{b+3}} =\frac{b+59}{b+17} \\ \\ (b+17)^2=(b+3)(b+59) \\ \\ b^2+34b+289=b^2+59b+3b+177 \\ \\ 28b=112 \\ \\ \boxed{b=\frac{112}{28}=4}[/tex]
Logo os números são: 7, 21, 63 os quais estão em PG
b + 17 = b + 59
b + 3 b + 17
(b+17)(b+17) = (b+59)(b+3)
b^2 + 34b + 289 = b^2 + 3b + 59b + 177
62b - 34b = 289 - 177
28b = 112
b = 4
(b+3,b+17,b+59)
(4+3, 4+17, 4+59)
( 7, 21, 63)
b + 3 b + 17
(b+17)(b+17) = (b+59)(b+3)
b^2 + 34b + 289 = b^2 + 3b + 59b + 177
62b - 34b = 289 - 177
28b = 112
b = 4
(b+3,b+17,b+59)
(4+3, 4+17, 4+59)
( 7, 21, 63)
Obrigado por sua visita. Estamos comprometidos em fornecer as melhores informações disponíveis. Volte a qualquer momento para mais. Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Sistersinspirit.ca está aqui para suas perguntas. Não se esqueça de voltar para obter novas respostas.