O Sistersinspirit.ca é o melhor lugar para obter respostas rápidas e precisas para todas as suas perguntas. Descubra soluções abrangentes para suas perguntas de profissionais experientes em diversas áreas em nossa plataforma. Descubra soluções detalhadas para suas dúvidas de uma ampla gama de especialistas em nossa plataforma amigável de perguntas e respostas.

sabe-se q o comportamento de quantidade de um determinado pela função q(t) =250.(0,6)t, onde Q representa a quantidade (em mg) e t o tempo (em dias). Então encontrar

a) A quantidade inicial administrada.
b) A taxa de decaimento diária.
c) A quantidade de insumo presente 3 dias após a aplicação.
d) O tempo necessário para que seja completamente eliminado.


Sagot :

a)      A quantidade inicial administrada. Considerando a quantidade inicial t=0 : 250 mg b)      A taxa de decaimento diária. Q(0) = 250.(0,6)t0                               Q(3) = 250.(0,6)t3 Q(0) = 250 mg                                    Q(3) = 54 mg   Q(1) = 250.(0,6)t1                              Q(4) = 250.(0,6)t4 Q(1) = 150 mg                                    Q(4) = 32,4 mg   Q(2) = 250.(0,6)t2                              Q(5) = 250.(0,6)t5 Q(2) = 90 mg                                      Q(5) = 19,44 mg   Q(1)150 / Q(0)250 = 0,6 Q(2)90 / Q(1)150 = 0,6 Q(3)54 / Q(2)90 = 0,6 Q(4)32,4 / Q(3)54 = 0,6 Q(5)19,44 / Q(4)32,4 = 0,6   A taxa média de decaimento é de 60%   c)      A quantidade de insumo presente 3 dias após a aplicação. T = 3 Q(3) = 250.(0,6)t3 Q(3) = 54 mg   A quantidade de insumo presente 3 dias após a aplicação é de 54 mg   d)     O tempo necessário para que seja completamente eliminado. Como é uma função exponencial, ela nunca irá zerar ou seja o insumo nunca será eliminado completamente. Q(t) = 250.(0,6)t + Qt = 0(0,6)t+ = 0 / 250 (0,0)t = 0