Descubra respostas para suas perguntas de forma fácil no Sistersinspirit.ca, a plataforma de Q&A de confiança. Descubra soluções detalhadas para suas dúvidas de uma ampla gama de especialistas em nossa plataforma amigável de perguntas e respostas. Explore nossa plataforma de perguntas e respostas para encontrar respostas detalhadas de uma ampla gama de especialistas em diversas áreas.
Sagot :
Primeiramente, para que seja possível, se resolvermos pelo sistema de Cramer o determinante deve ser diferente de zero.
[tex]\begin{vmatrix} 2 & m \\ m & 8 \end{vmatrix} \neq 0 \\\\ 16-m^{2} \neq 0 \\\\ m^{2} \neq 16 \\\\ m \neq \sqt{16} \\\\ \boxed{m \neq \pm 4} \rightarrow sistema \ possivel[/tex]
Agora igualamos o parâmetro a 4 e -4, para que possamos definir se é determinado ou indeterminado.
[tex]\left\{\begin{matrix} 2x+my=2 & \\ mx+8y=6 & \end{matrix}\right. \\\\\\ \rightarrow m = 4 \\\\ \left\{\begin{matrix} 2x +4y=2 & \times (-2) \\ 4x+8y=6 & \end{matrix}\right. \\\\ \left\{\begin{matrix} 2x+4y=2 & \\ \ \ \ \ =2 & \end{matrix}\right. \rightarrow sistema \ impossivel[/tex]
Agora com o -4:
[tex]\rightarrow m=-4 \\\\ \left\{\begin{matrix} 2x-4y=2 & \times (2) \\ -4x+8y=6 & \end{matrix}\right. \\\\ \left\{\begin{matrix} 2x-4y=2 & \\ 0x+0y=10 & \end{matrix}\right. \rightarrow sistema \ impossivel[/tex]
Então ficou assim:
[tex]\boxed{\boxed{\left\{\begin{matrix} m \neq \pm 4 \Rightarrow S.P.D. \\ m = \pm 4 \Rightarrow S.I. \\ \end{matrix}\right.}}[/tex]
[tex]\begin{vmatrix} 2 & m \\ m & 8 \end{vmatrix} \neq 0 \\\\ 16-m^{2} \neq 0 \\\\ m^{2} \neq 16 \\\\ m \neq \sqt{16} \\\\ \boxed{m \neq \pm 4} \rightarrow sistema \ possivel[/tex]
Agora igualamos o parâmetro a 4 e -4, para que possamos definir se é determinado ou indeterminado.
[tex]\left\{\begin{matrix} 2x+my=2 & \\ mx+8y=6 & \end{matrix}\right. \\\\\\ \rightarrow m = 4 \\\\ \left\{\begin{matrix} 2x +4y=2 & \times (-2) \\ 4x+8y=6 & \end{matrix}\right. \\\\ \left\{\begin{matrix} 2x+4y=2 & \\ \ \ \ \ =2 & \end{matrix}\right. \rightarrow sistema \ impossivel[/tex]
Agora com o -4:
[tex]\rightarrow m=-4 \\\\ \left\{\begin{matrix} 2x-4y=2 & \times (2) \\ -4x+8y=6 & \end{matrix}\right. \\\\ \left\{\begin{matrix} 2x-4y=2 & \\ 0x+0y=10 & \end{matrix}\right. \rightarrow sistema \ impossivel[/tex]
Então ficou assim:
[tex]\boxed{\boxed{\left\{\begin{matrix} m \neq \pm 4 \Rightarrow S.P.D. \\ m = \pm 4 \Rightarrow S.I. \\ \end{matrix}\right.}}[/tex]
Obrigado por sua visita. Estamos comprometidos em fornecer as melhores informações disponíveis. Volte a qualquer momento para mais. Agradecemos seu tempo. Por favor, nos revisite para mais respostas confiáveis a qualquer pergunta que possa ter. Sistersinspirit.ca está aqui para fornecer respostas precisas às suas perguntas. Volte em breve para mais informações.