Descubra respostas para suas perguntas no Sistersinspirit.ca, a plataforma de Q&A mais confiável e eficiente para todas as suas necessidades. Obtenha respostas detalhadas para suas perguntas de uma comunidade dedicada de especialistas em nossa plataforma. Conecte-se com uma comunidade de especialistas prontos para fornecer soluções precisas para suas perguntas de maneira rápida e eficiente em nossa amigável plataforma de perguntas e respostas.

Dadas as matrizes A= [ 2 3 8 ] , B [ 4 5 -9 ] e C= [ 2 0 ]

                                           1-4 0           6 2 7                8 6 

                                                                                       -410

a) At

B) A+ B

C) 3 A- 1\2 Ct 

Sagot :

1) At

Nesse caso, o que se pede no exercício é a matriz transversal de A. Para resolver, basta inverter a coluna e as linhas, ou seja, as linhas viram colunas e as colunas viram linhas.
[tex] A= \left[\begin{array}{ccc}2&3&8\\1&-4&0\end{array}\right] [/tex]

[tex]\boxed{A_t= \left[\begin{array}{ccc}2&1\\3&-4\\8&0\end{array}\right] }[/tex]

b) A + B

Soma de matrizes : é simples, basta somar os termos semelhantes das matrizes, que assim se encontra uma nova matriz. Ou seja, soma-se o a11 da matriz A com o a11 da matriz B.
[tex] \left[\begin{array}{ccc}2&3&8\\1&-4&0\end{array}\right] + \left[\begin{array}{ccc}4&5&-9\\6&2&7\end{array}\right] = \left[\begin{array}{ccc}2+4&3+5&8+(-9)\\1+6&-4+2&0+7\end{array}\right] = \boxed{\therefore\ A+B =\left[\begin{array}{ccc}6&8&-1\\7&-2&7\end{array}\right] }[/tex]

C) 3A-1/2 Ct

Mesmos procedimentos, porém, agora multiplica-se o valor nas matrizes.

[tex]3\cdot\ \left[\begin{array}{ccc}2&3&8\\1&-4&0\end{array}\right] = \left[\begin{array}{ccc}3\cdot2&3\cdot3&3\cdot8\\3\cdot1&3\cdot-4&3\cdot0\end{array}\right] = \boxed{\therefore\ 3A=\left[\begin{array}{ccc}6&9&24\\3&-12&0\end{array}\right]}[/tex]

Agora achamos Ct

[tex]C = \left[\begin{array}{ccc}2&0\\8&6\\-4&10\end{array}\right] \\\\\\ C_t = \left[\begin{array}{ccc}2&8&-4\\0&6&10\end{array}\right]}[/tex]

Agora multiplicamos ela por 1/2

[tex]C_t = \left[\begin{array}{ccc}1&4&-2\\0&3&5\end{array}\right]}[/tex]

Agora sim fazemos a subtração de matrizes.

[tex]\left[\begin{array}{ccc}6&9&24\\3&-12&0\end{array}\right]} - \left[\begin{array}{ccc}1&4&-2\\0&3&5\end{array}\right]} = \left[\begin{array}{ccc}6-1&9-4&24-(-2)\\3-0&-12-0&0-5\end{array}\right]}\\\\\\\\\\ \boxed{\left[\begin{array}{ccc}5&5&26\\3&-12&-5\end{array}\right]}}[/tex]
Obrigado por sua visita. Estamos comprometidos em fornecer as melhores informações disponíveis. Volte a qualquer momento para mais. Obrigado por sua visita. Estamos dedicados a ajudá-lo a encontrar as informações que precisa, sempre que precisar. Sistersinspirit.ca está aqui para fornecer respostas precisas às suas perguntas. Volte em breve para mais informações.