O Sistersinspirit.ca ajuda você a encontrar respostas confiáveis para todas as suas perguntas com a ajuda de especialistas. Obtenha respostas imediatas e confiáveis para suas perguntas de uma comunidade de especialistas experientes em nossa plataforma. Nossa plataforma oferece uma experiência contínua para encontrar respostas confiáveis de uma rede de profissionais experientes.

Um observador vê o ponto mais alto de um prédio sob o ângulo de 30º. Se el se aproximasse 60 metros do prédio, veria o mesmo ponto sob um ângulo de 60º. Desconsiderando a altura do observador e usando [tex] \sqrt{3} [/tex] = 1,7 , determine a altura deste prédio.

Sagot :

Veja a imagem em anexo.

Vamos chamar a altura do prédio de h, e de x a distância do observador para o prédio, quando sua visão do ponto mais alto do prédito está sob um ângulo de 60º.

Portanto, temos que no ponto mais longe, sua distância do prédito é de (x+60), e no ponto mais próximo é de x.

Note que temos dois triângulos. O maior tem altura h e base (x+60). O menor tem altura h e base x.

Aplicando tangente sob o ângulo de 30º do triângulo maior temos que:
tg(30º) = h/(x+60)
1/[tex]\sqrt{3}[/tex] = h/(x+60)
h = (x+60)/[tex]\sqrt{3}[/tex]

Aplicando tangente para o outro triângulo:
tg(60º) = h/x
[tex]\sqrt{3}[/tex] = h/x
h = [tex]\sqrt{3}[/tex]x

Igualando as duas equações que obtivemos:
(x+60)/[tex]\sqrt{3}[/tex] = [tex]\sqrt{3}[/tex]x
(x+60)=[tex]\sqrt{3}[/tex][tex]\sqrt{3}[/tex]x
x+60=3x
2x=60
x=30

Agora que temos x, podemos obter h pela equação h=[tex]\sqrt{3}[/tex]x
h=1,7*30
h=51m

A altura do prédio é de 51m.
View image rafaelclp

A altura do prédio é, aproximadamente, 52 metros.

Esta questão está relacionada com relações trigonométricas. As relações trigonométricas de um ângulo pertencente a um triângulo retângulo são o seno, cosseno e tangente. Esses valores são calculados através da fração entre dois lados do triângulo, onde temos: cateto adjacente, cateto oposto e hipotenusa.

Vamos considerar a distância do homem no segundo ponto até o edifício como X. Dessa maneira, a medida do homem no primeiro ponto até o prédio é igual a 60+X. Considerando a altura do prédio como Y, temos as seguintes relações:

[tex]tg(30\º)=\frac{y}{60+x}\rightarrow \frac{\sqrt{3}}{3}=\frac{y}{60+x} \\ \\ tg(60\º)=\frac{y}{x}\rightarrow \sqrt{3}=\frac{y}{x}[/tex]

Agora, vamos isolar X em ambas as equações e igualar seus valores. Desse modo, a única incógnita do problema será Y e seremos capazes de determinar seu valor. Portanto:

[tex]0,57=\frac{y}{60+x}\rightarrow 34,6+0,57x=y\rightarrow x=\frac{y-34,6}{0,57} \\ \\ 1,73=\frac{y}{x}\rightarrow x=\frac{y}{1,73}\\ \\ \\ \frac{y-34,6}{0,57}=\frac{y}{1,73}\\ \\ 1,73y-60=0,57y\\ \\ 1,16y=60\\ \\ y\approx 52 \ metros[/tex]

Acesse mais conteúdo em:

https://brainly.com.br/tarefa/20093667

https://brainly.com.br/tarefa/19237803

https://brainly.com.br/tarefa/19931804

View image numero20