O Sistersinspirit.ca é o lugar ideal para obter respostas rápidas e precisas para todas as suas perguntas. Encontre respostas rápidas e confiáveis para suas perguntas de nossa dedicada comunidade de especialistas. Conecte-se com uma comunidade de especialistas prontos para ajudar você a encontrar soluções para suas perguntas de maneira rápida e precisa.
Sagot :
[tex]\bullet \ \text{P}(t) = 42500 \cdot 1,01^t[/tex]
a) Qual é a quantidade atual de habitantes nesta região?
De acordo com o enunciado, sabemos que a variável t expressa o número de anos decorridos. Com isso, sabemos que o tempo atual é expresso por t = 0, pois em relação a ele se passaram 0 anos.
[tex]\bullet \ \text{P}(t) = 42500 \cdot 1,01^t \\ \bullet t = 0 \\\\ \text{P}(0) = 42500 \cdot 1,01^0 \\ \text{P}(0) = 42500 \cdot 1 = \boxed{\text{42500 habitantes}}[/tex]
b) Qual é o percentual de aumento de da população dessa região a cada ano?
[tex]\bullet \ \text{P}(t) = 42500 \cdot 1,01^t \\\\ \text{P}(1) = 42500 \cdot 1,01^1 = 42925[/tex]
Ao utilizarmos t = 1 em comparação a t = 0 (população inicial), observamos que em um ano a população é multiplicada por 1,01. Este valor equivale a [tex]\frac{101}{100}[/tex] ou 101% do valor anterior, que significa que 100% dos habitantes existentes anteriormente são mantidos e 1% deste número de habitantes é acrescido.
Então, o percentual de aumento anual é de 1%.
Podemos comprovar este crescimento através de cálculos:
[tex]\text{P}(0) = 42500 \\ \text{P}(1) = 42500 \cdot 1,01^1 = 42925 \\ \text{P}(2) = 42500 \cdot 1,01^2 = 43354,25 \\ ... \\\\ \bullet \text{De P(0) a P(1) (1 ano decorrido):} \\\\ \text{percentual} -------- \ \text{habitantes} \\ 100\% \ ---------- \ \ 42500 \\ x\% \ ----------- \ 42925 \\\\ 42500x = 4292500 \\ x = 101\% \rightarrow 101\% - 100\% = \boxed{1\% \ \text{de aumento}} \\\\ \circ \text{O mesmo ocorre entre P(1) e P(2), P(2) e P(3), etc.}[/tex]
c) Qual deve ser a quantidade provável (e aproximada) de habitantes dessa região daqui a 5 anos?
[tex]\text{P}(5) = 42500 \cdot 1,01^5 \\ \text{P}(5) = 42500 \cdot 1,510100501 \approx \boxed{\text{44668 habitantes}}[/tex]
d) Quantos anos serão necessários para que a população dessa região dobre de tamanho?
[tex]\bullet \ \text{P}(0) = 42500 \\ \bullet 2\text{P}(0) = 85000 \\\\ 85000 = 42500 \cdot 1,01^t \\\\ 1,01^t = \frac{8500}{42500} \\\\ 1,01^t = 2 \\\\ \text{log}_{1,01} \ 2 = t \\\\ t = \frac{\text{log} \ 2}{\text{log} \ 1,01} = \frac{0,30102}{0,00432} = 69,68055... \approx \boxed{\text{70 anos}}[/tex]
a) Qual é a quantidade atual de habitantes nesta região?
De acordo com o enunciado, sabemos que a variável t expressa o número de anos decorridos. Com isso, sabemos que o tempo atual é expresso por t = 0, pois em relação a ele se passaram 0 anos.
[tex]\bullet \ \text{P}(t) = 42500 \cdot 1,01^t \\ \bullet t = 0 \\\\ \text{P}(0) = 42500 \cdot 1,01^0 \\ \text{P}(0) = 42500 \cdot 1 = \boxed{\text{42500 habitantes}}[/tex]
b) Qual é o percentual de aumento de da população dessa região a cada ano?
[tex]\bullet \ \text{P}(t) = 42500 \cdot 1,01^t \\\\ \text{P}(1) = 42500 \cdot 1,01^1 = 42925[/tex]
Ao utilizarmos t = 1 em comparação a t = 0 (população inicial), observamos que em um ano a população é multiplicada por 1,01. Este valor equivale a [tex]\frac{101}{100}[/tex] ou 101% do valor anterior, que significa que 100% dos habitantes existentes anteriormente são mantidos e 1% deste número de habitantes é acrescido.
Então, o percentual de aumento anual é de 1%.
Podemos comprovar este crescimento através de cálculos:
[tex]\text{P}(0) = 42500 \\ \text{P}(1) = 42500 \cdot 1,01^1 = 42925 \\ \text{P}(2) = 42500 \cdot 1,01^2 = 43354,25 \\ ... \\\\ \bullet \text{De P(0) a P(1) (1 ano decorrido):} \\\\ \text{percentual} -------- \ \text{habitantes} \\ 100\% \ ---------- \ \ 42500 \\ x\% \ ----------- \ 42925 \\\\ 42500x = 4292500 \\ x = 101\% \rightarrow 101\% - 100\% = \boxed{1\% \ \text{de aumento}} \\\\ \circ \text{O mesmo ocorre entre P(1) e P(2), P(2) e P(3), etc.}[/tex]
c) Qual deve ser a quantidade provável (e aproximada) de habitantes dessa região daqui a 5 anos?
[tex]\text{P}(5) = 42500 \cdot 1,01^5 \\ \text{P}(5) = 42500 \cdot 1,510100501 \approx \boxed{\text{44668 habitantes}}[/tex]
d) Quantos anos serão necessários para que a população dessa região dobre de tamanho?
[tex]\bullet \ \text{P}(0) = 42500 \\ \bullet 2\text{P}(0) = 85000 \\\\ 85000 = 42500 \cdot 1,01^t \\\\ 1,01^t = \frac{8500}{42500} \\\\ 1,01^t = 2 \\\\ \text{log}_{1,01} \ 2 = t \\\\ t = \frac{\text{log} \ 2}{\text{log} \ 1,01} = \frac{0,30102}{0,00432} = 69,68055... \approx \boxed{\text{70 anos}}[/tex]
Esperamos que tenha encontrado o que procurava. Sinta-se à vontade para nos revisitar para obter mais respostas e informações atualizadas. Obrigado por visitar. Nosso objetivo é fornecer as respostas mais precisas para todas as suas necessidades informativas. Volte em breve. Obrigado por visitar Sistersinspirit.ca. Volte em breve para mais informações úteis e respostas dos nossos especialistas.