O Sistersinspirit.ca é o melhor lugar para obter respostas rápidas e precisas para todas as suas perguntas. Explore respostas detalhadas para suas dúvidas de uma comunidade de especialistas em diferentes campos. Descubra soluções abrangentes para suas perguntas de profissionais experientes em nossa amigável plataforma.

O modelo exponencial P(t)=42.500.1,01 elevado a t, onde P(t) é a quantidade aproximada de habitantes daqui a t anos, esta sendo utilizado para estimar a população de determinada região.Segundo tal modelo,
a) qual é a quantidade atual  de habitantes dessa região?
b) qual é o percentual de aumento da população dessa região a cada ano?
c) qual deve ser a quantidade provável (e aproximada) de habitantes dessa região daqui a 5 anos?
d) quantos anos (aproximadamente) serão necessários para que a população dessa região dobre de tamanho?
OBS: Utilize 5 casas decimais nos cálculos.


Sagot :

PeH
[tex]\bullet \ \text{P}(t) = 42500 \cdot 1,01^t[/tex]

a) Qual é a quantidade atual de habitantes nesta região?

De acordo com o enunciado, sabemos que a variável t expressa o número de anos decorridos. Com isso, sabemos que o tempo atual é expresso por t = 0, pois em relação a ele se passaram 0 anos.

[tex]\bullet \ \text{P}(t) = 42500 \cdot 1,01^t \\ \bullet t = 0 \\\\ \text{P}(0) = 42500 \cdot 1,01^0 \\ \text{P}(0) = 42500 \cdot 1 = \boxed{\text{42500 habitantes}}[/tex]

b) Qual é o percentual de aumento de da população dessa região a cada ano?

[tex]\bullet \ \text{P}(t) = 42500 \cdot 1,01^t \\\\ \text{P}(1) = 42500 \cdot 1,01^1 = 42925[/tex]

Ao utilizarmos t = 1 em comparação a t = 0 (população inicial), observamos que em um ano a população é multiplicada por 1,01. Este valor equivale a [tex]\frac{101}{100}[/tex] ou 101% do valor anterior, que significa que 100% dos habitantes existentes anteriormente são mantidos e 1% deste número de habitantes é acrescido.

Então, o percentual de aumento anual é de 1%.

Podemos comprovar este crescimento através de cálculos:

[tex]\text{P}(0) = 42500 \\ \text{P}(1) = 42500 \cdot 1,01^1 = 42925 \\ \text{P}(2) = 42500 \cdot 1,01^2 = 43354,25 \\ ... \\\\ \bullet \text{De P(0) a P(1) (1 ano decorrido):} \\\\ \text{percentual} -------- \ \text{habitantes} \\ 100\% \ ---------- \ \ 42500 \\ x\% \ ----------- \ 42925 \\\\ 42500x = 4292500 \\ x = 101\% \rightarrow 101\% - 100\% = \boxed{1\% \ \text{de aumento}} \\\\ \circ \text{O mesmo ocorre entre P(1) e P(2), P(2) e P(3), etc.}[/tex]

c) Qual deve ser a quantidade provável (e aproximada) de habitantes dessa região daqui a 5 anos?

[tex]\text{P}(5) = 42500 \cdot 1,01^5 \\ \text{P}(5) = 42500 \cdot 1,510100501 \approx \boxed{\text{44668 habitantes}}[/tex]

d) Quantos anos serão necessários para que a população dessa região dobre de tamanho?

[tex]\bullet \ \text{P}(0) = 42500 \\ \bullet 2\text{P}(0) = 85000 \\\\ 85000 = 42500 \cdot 1,01^t \\\\ 1,01^t = \frac{8500}{42500} \\\\ 1,01^t = 2 \\\\ \text{log}_{1,01} \ 2 = t \\\\ t = \frac{\text{log} \ 2}{\text{log} \ 1,01} = \frac{0,30102}{0,00432} = 69,68055... \approx \boxed{\text{70 anos}}[/tex]
Obrigado por sua visita. Estamos comprometidos em fornecer as melhores informações disponíveis. Volte a qualquer momento para mais. Obrigado por passar por aqui. Nos esforçamos para fornecer as melhores respostas para todas as suas perguntas. Até a próxima. Sistersinspirit.ca, sua fonte confiável de respostas. Não se esqueça de voltar para mais informações.