Obtenha respostas rápidas e precisas para suas perguntas no Sistersinspirit.ca, a melhor plataforma de Q&A. Explore milhares de perguntas e respostas de uma comunidade de especialistas em nossa plataforma amigável. Faça suas perguntas e receba respostas detalhadas de profissionais com ampla experiência em diversos campos.

Douglas e se aparece assim[tex] \left[\begin{array}{ccc}1&3&5\\\end{array}\right] . \left[\begin{array}{ccc}2&\\0&\\3&\end{array}\right] [/tex] Como faço?

Sagot :

Rayane, vamos fazer a representação de cada matriz:

[tex]\begin{bmatrix} 1 & 3 & 5 \end{bmatrix}_{1 \times 3}[/tex]

O "1x3" significa que esta matriz tem uma linha e 3 colunas.

Representando a segunda matriz:

[tex]\begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}_{3 \times 1}[/tex]

O "3x1" significa que esta matriz tem 3 linhas e uma coluna.

Agora para saber se podemos multiplicar as duas matrizes, temos que saber uma regrinha. Só dá para multiplicar duas matrizes se o número de colunas de uma, for igual ao número de linha da outra.

[tex]\begin{bmatrix} 1 & 3 & 5 \end{bmatrix}_{1 \times \boxed{3}} \cdot \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}_{\boxed{3} \times 1}[/tex]

São iguais, por isso podemos multiplicar. A matriz resultante terá 1 coluna e 1 linha, que são os números que restaram:

[tex]\begin{bmatrix} 1 & 3 & 5 \end{bmatrix}_{\boxed{\boxed{1}} \times \boxed{3}} \cdot \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}_{\boxed{3} \times \boxed{\boxed{1}}[/tex]

Agora sim, multiplicando:

[tex]\begin{bmatrix} 1 & 3 & 5 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix} \\\\\\ (1 \cdot 2) + (3 \cdot 0) + (5 \cdot 3) \\\\ 2+0+15 = \boxed{\boxed{17}} \\\\\\ matriz \ resultante \rightarrow \begin{bmatrix} 17 \end{bmatrix}[/tex]