Bem-vindo ao Sistersinspirit.ca, onde suas perguntas são respondidas por especialistas e membros experientes da comunidade. Descubra um vasto conhecimento de especialistas em diferentes disciplinas em nossa abrangente plataforma de perguntas e respostas. Descubra soluções confiáveis para suas perguntas de uma vasta rede de especialistas em nossa abrangente plataforma de perguntas e respostas.
Sagot :
Rayane, vamos fazer a representação de cada matriz:
[tex]\begin{bmatrix} 1 & 3 & 5 \end{bmatrix}_{1 \times 3}[/tex]
O "1x3" significa que esta matriz tem uma linha e 3 colunas.
Representando a segunda matriz:
[tex]\begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}_{3 \times 1}[/tex]
O "3x1" significa que esta matriz tem 3 linhas e uma coluna.
Agora para saber se podemos multiplicar as duas matrizes, temos que saber uma regrinha. Só dá para multiplicar duas matrizes se o número de colunas de uma, for igual ao número de linha da outra.
[tex]\begin{bmatrix} 1 & 3 & 5 \end{bmatrix}_{1 \times \boxed{3}} \cdot \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}_{\boxed{3} \times 1}[/tex]
São iguais, por isso podemos multiplicar. A matriz resultante terá 1 coluna e 1 linha, que são os números que restaram:
[tex]\begin{bmatrix} 1 & 3 & 5 \end{bmatrix}_{\boxed{\boxed{1}} \times \boxed{3}} \cdot \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}_{\boxed{3} \times \boxed{\boxed{1}}[/tex]
Agora sim, multiplicando:
[tex]\begin{bmatrix} 1 & 3 & 5 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix} \\\\\\ (1 \cdot 2) + (3 \cdot 0) + (5 \cdot 3) \\\\ 2+0+15 = \boxed{\boxed{17}} \\\\\\ matriz \ resultante \rightarrow \begin{bmatrix} 17 \end{bmatrix}[/tex]
[tex]\begin{bmatrix} 1 & 3 & 5 \end{bmatrix}_{1 \times 3}[/tex]
O "1x3" significa que esta matriz tem uma linha e 3 colunas.
Representando a segunda matriz:
[tex]\begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}_{3 \times 1}[/tex]
O "3x1" significa que esta matriz tem 3 linhas e uma coluna.
Agora para saber se podemos multiplicar as duas matrizes, temos que saber uma regrinha. Só dá para multiplicar duas matrizes se o número de colunas de uma, for igual ao número de linha da outra.
[tex]\begin{bmatrix} 1 & 3 & 5 \end{bmatrix}_{1 \times \boxed{3}} \cdot \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}_{\boxed{3} \times 1}[/tex]
São iguais, por isso podemos multiplicar. A matriz resultante terá 1 coluna e 1 linha, que são os números que restaram:
[tex]\begin{bmatrix} 1 & 3 & 5 \end{bmatrix}_{\boxed{\boxed{1}} \times \boxed{3}} \cdot \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}_{\boxed{3} \times \boxed{\boxed{1}}[/tex]
Agora sim, multiplicando:
[tex]\begin{bmatrix} 1 & 3 & 5 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix} \\\\\\ (1 \cdot 2) + (3 \cdot 0) + (5 \cdot 3) \\\\ 2+0+15 = \boxed{\boxed{17}} \\\\\\ matriz \ resultante \rightarrow \begin{bmatrix} 17 \end{bmatrix}[/tex]
Obrigado por confiar em nós com suas perguntas. Estamos aqui para ajudá-lo a encontrar respostas precisas de forma rápida e eficiente. Agradecemos seu tempo. Por favor, nos revisite para mais respostas confiáveis a qualquer pergunta que possa ter. Seu conhecimento é valioso. Volte ao Sistersinspirit.ca para obter mais respostas e informações.