O Sistersinspirit.ca é o melhor lugar para obter respostas rápidas e precisas para todas as suas perguntas. Explore soluções abrangentes para suas perguntas de uma ampla gama de profissionais em nossa plataforma amigável. Descubra soluções confiáveis para suas perguntas de uma vasta rede de especialistas em nossa abrangente plataforma de perguntas e respostas.

Um terreno retangular tem 1100 [tex] m^{2} [/tex] de área. A frente desse terreno tem 28 metros a menos que a lateral. Quais são as dimensões desse terreno ?

Sagot :

A=1100 m²
Vamos dizer que a lateral mede d, e a frente mede f. A área é o produto dos dois, A=d*f.
Pelo enunciado, "A frente desse terreno tem 28 metros a menos que a lateral". Portanto, a frente f=d-28.
A=d*f
A=d*(d-28)
1100=d*(d-28)
1100=d²-28d
d²-28d-1100=0

Aplicando Bhaskara:
d=[-b +- raiz(b²-4ac)]/(2a)
d=[-(-28) +- raiz((-28)²-4(1)(-1100))]/(2*1)
d=[28 +- raiz(784+4400)]/2
d=[28 +- raiz(
5184)]/2
Se você fatorar 5184, obterá 5184=2*2*2*2*2*2*3*3*3*3=(2*2*2*3*3)²=72², então raiz(5184)=72
d=(28 +- 72)/2
d'=(28-72)/2=-22 (como o lado deve ter valor positivo, este valor não é válido do ponto de vista geométrico, então desconsideramos)
d''=(28+72)/2=50

Portanto, a lateral mede 50m. Como a frente tem 28m a menos que a lateral, a frente mede 22m.
Obrigado por usar nossa plataforma. Nosso objetivo é fornecer respostas precisas e atualizadas para todas as suas perguntas. Volte em breve. Obrigado por usar nosso serviço. Estamos sempre aqui para fornecer respostas precisas e atualizadas para todas as suas perguntas. Volte ao Sistersinspirit.ca para obter mais conhecimento e respostas dos nossos especialistas.