O Sistersinspirit.ca ajuda você a encontrar respostas confiáveis para todas as suas perguntas com a ajuda de especialistas. Junte-se à nossa plataforma para conectar-se com especialistas prontos para fornecer respostas detalhadas para suas perguntas em diversas áreas. Descubra respostas detalhadas para suas perguntas de uma vasta rede de profissionais em nossa abrangente plataforma de perguntas e respostas.

Numa PG crescente a2= 6 e a4= 54, calcular a soma dos cinco primeiros termos:


A soma dos 6 primeiros termos iniciais de uma PG é 1456, sabendoque a razão dessa PG é q=3 calcule a1:


Sagot :

"Numa PG crescente a2= 6 e a4= 54, calcular a soma dos cinco primeiros termos"
Em uma PG, An=A1*q^(n-1), onde q é a razão
Nós temos A2=6 e A4=54.

Vamos aplicar a equação do An para o A2 e o A4, para tentar achar a razão q.
A2=A1*q
A4=A1*q^3
Dividimos um pelo outro,
A4/A2=(A1*q^3)/(A1*q)
Note que o A1 de cima corta com o A1 debaixo, e o q^3 de cima corta com o q debaixo, ficando só q^2.
A4/A2=q^2
54/6=q^2
9=q^2
q=3

Agora que temos a razão, encontramos A1 a partir de A2:
A2=A1*q
6=A1*3
A1=2

A soma dos n primeiros termos de uma PG: Sn=A1(1-q^n)/(1-q)
S5=2(1-3^5)/(1-3)=2(1-243)/(-2)=2(-242)(-2)=242

Resposta: 242

"A soma dos 6 primeiros termos iniciais de uma PG é 1456, sabendoque a razão dessa PG é q=3 calcule a1"
Sn=A1(1-q^n)/(1-q)
Extraímos do enunciado que S6=1456, q=3, n=6. Jogando tudo na equação:
1456=A1(1-3^6)/(1-3)
1456=A1(1-729)/(-2)
-2912=A1(1-729)
-2912=A1(-728)
A1=4

Resposta: 4